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Abstract

Increased ocean temperatures caused by climate change are expected to lead

to more frequent and severe harmful algal blooms, which deteriorate water qual-

ity, cause human illness and fish mortality. Scientific understanding of algal

blooms and their dynamics is limited due to the lack of data from such ocean

phenomena. State-of-the-art ocean monitoring includes satellite imagery and

dedicated research vessels. Mobile sensors based on autonomous underwater

vehicles (AUVs) and other robotic technologies are of growing importance for

efficient environmental monitoring of the oceans. The overall objective of this

thesis is to design a system for ocean feature estimation and tracking based on

adaptive sensor sampling using AUVs. The thesis contributions are focused on

the following three problems.

The first problem we consider is how to estimate and track circular and non-

circular ocean features using a multi-robot system. We propose a circumnav-

igation control law, proving that it forces the AUVs to converge to a circular

formation. Two target estimation algorithms are presented: one is based on a

leader-follower approach, while the other is distributed. Both algorithms are

shown to successfully estimate and track the mobile target’s location.

Secondly, we consider the problem of tracking ocean fronts using a single

AUV supported by satellite data. We develop a Gaussian process model for the

front estimation and show how it can be updated based on the available sen-

sor and satellite data. Using this model, a control law is developed that guides

the AUV to move toward and along the ocean front. The closed-loop system is

evaluated through a detailed simulation environment with realistic vehicle and

environment models and real algal bloom data.

Finally, we develop an experimental setup based on a real AUV to demon-

strate that our method for algal bloom tracking is feasible in practice. We show

experimental results from two surveys in the Stockholm archipelago and com-

pare the performance of the real system with simulation studies. The results

indicate that the front tracking and gradient estimation algorithms are working

well but also suggest important items for further studies.
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Sammanfattning

Stigande havstemperaturer på grund av klimatförändringar förväntas leda

till fler och allvarligare algblomningar som kommer att försämra vattenkvaliten,

men också orsaka sjukdomar bland människor och dödsfall bland fiskar. Sam-

tidigt är den vetenskapliga förståelsen för algblomning och dess utbrednings-

mekanismer begränsad, och det finns ont om information om detta fenomen. I

dagsläget görs havsövervakning med bland annat satelitbilder och dedikerade

forskningsfarkoster. Mobila sensorer på autonoma undervattensfarkoster (au-

tonomous underwater vehicles, AUVs) och andra robotikmetoder har därmed

börjat spela en större roll i att uppnå en effektiv klimatövervakning i våra vat-

ten. Det övergripande målet med denna avhandling är att designa ett system för

detektering och spårning av havsföremål med hjälp av adaptiv sensorprovtagn-

ing med AUVs. Avhandlingens bidrag fokuserar på de följande tre problemen.

Det första problemet som behandlas är hur cirkulära och icke-cirkulära havs-

föremål kan detekteras och spåras av ett system med flera robotar. Vi föreslår

en regleralgoritm som bygger på kringsegling, och bevisar hur det resulterar i

att alla AUVs konvergerar till en cirkulär formation. Två målestimeringsalgo-

ritmer presenteras: den ena bygger på en ledare-följare-metod och den andra på

en distribuerad metod. Vi demonstrerar att båda algoritmerna kan detektera det

rörliga målet och spåra dess position.

Det andra problemet som behandlas är spårning av havsfronter med en en-

sam AUV som har tillgång till satelitinformation. Vi använder en gaussisk pro-

cess för att modellera fronter och visar att den kan uppdateras med data från

sensorer och sateliter. Modellen används följaktligen till att ta fram en regler-

algoritm som styr en AUV till fronten och sedan följer den. Det återkopplade

systemet utvärderas i simuleringar med realistiska modeller för farkost och vat-

tenmiljö tillsammans med verklig algblomningsdata.

Slutligen utvecklar vi en experimentplatform baserat på en riktig AUV för

att demonstera att spårningen av algblomning fungerar i verkligheten. Resultat

från två experiment in Stockholms skärgård presenteras, och det verkliga sys-

temets prestanda jämförs med prestandan i simulering. Resultaten indikerar att

algoritmerna för frontspårning och gradientestimering fungerar väl, men lyfter

även fram frågor som bör besvaras i framtida studier.
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Chapter 1

Introduction

Algal blooms are common in the oceans and have several negative effects, in-

cluding lowering the water’s oxygen content and creating toxins that can en-

danger both humans and marine animals. The frequency and severity of algal

blooms are raising concerns as the global climate continues to change; there is

an urgent need for more detailed and reliable information on algal blooms and

other ocean phenomena. Algal blooms are predicted to occur more frequently

and with greater intensity as ocean temperatures rise and weather patterns grow

more harsh.

Autonomous monitoring methods have been investigated recently to help

address the effects of these blooms. A potential strategy is using autonomous

underwater vehicles (AUVs) to monitor Research problems and other ocean oc-

currences. AUVs can be sent into the ocean to gather data without human inter-

action. With sensors and tools for assessing water temperature, salinity, and dis-

solved oxygen, AUVs are suitable for detecting harmful algal blooms. Compared

to more conventional techniques like ship-based surveys or buoy networks, us-

ing AUVs for data collection has several benefits. They can more swiftly and

effectively cover broad portions of the ocean than other approaches, especially

in isolated or dangerous locations. They can also cover difficult areas such as

coastal regions, lakes, and rivers. Additionally, they offer high-resolution data

that can be used to create high-resolutionmaps andmodels of ocean phenomena,

which help scientists better comprehend how algal blooms develop and spread.

In this chapter, we examine how AUVs can be used to track algal blooms in

the context of climate change. We highlight the potential of AUVs for data col-

lection on these occurrences and the present status of research on algal blooms

and their effects. This thesis aims to contribute to developing more effective

1
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strategies for mitigating the negative impacts of algal blooms and other ocean

phenomena on marine ecosystems and coastal communities.

The rest of this chapter is organized as follows. In Section 1.1, we present

our motivation for multi- and single-agent systems tracking mobile targets and

fronts, considering the phenomena of harmful algal blooms and salinity plumes.

In Section 1.2, we formulate the main problem considered in the thesis. The

thesis outline and related contributions are presented in Section 1.3.

1.1 Motivation
Researchers worldwide have been using satellites, remote sensing, and buoys

to gather information on ocean phenomena and inform forecast models. These

methods tend to be expensive, inefficient for spatial coverage, or unable to pro-

vide trustworthy data. They always have a human in the loop for decision-making

or data post-processing. Having a human in the loop introduces delays and raises

the cost. Humans aren’t able to handle the vast amount of data generated by satel-

lites, remote sensing, and buoys efficiently. With this thesis, we formulate differ-

ent scenarios and design and implement appropriate solutions for autonomous

coastal surveys using AUVs.

All over the world, the phenomena of harmful algal blooms, as seen in

Fig. 1.1, occur frequently and with increasing impact. It has a substantial nega-

tive effect on the environment and human health. Therefore, plenty of research

has been done regarding the nature of this phenomenon, its causes, and its

impact. For example, the Swedish Meteorological and Hydrological Institute

(SMHI) has been documenting algal blooms in the Baltic Sea via satellite and

monthly missions of a manned research vessel for around 20 years [1]. This the-

sis suggests novel autonomous approaches to monitor algal blooms and other

biological phenomena at sea. Our approaches include a multi- or single-agent

marine system, satellite imagery, and numerical models.

Fronts are boundaries between water masses that differ significantly in the

value of one or more variables, such as temperature, salinity, or substance con-

centrations. These fronts shape marine ecosystems as their presence indicates

the occurrence of several physical and biological processes of interest, including

transition zones, jets, eddies, and phytoplankton blooms [2], [3]. Among these

frontal phenomena, harmful algal blooms (HABs) are the motivating scenario

of this thesis. Harmful algal blooms are a phenomenon where plankton algae

grow rapidly and form very large populations in a short time, which results in
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Figure 1.1: Satellite sensor MODIS (Moderate Resolution Imaging Spectrora-

diometer) provided a satellite picture showing algal blooms in the Baltic Sea in

July 2005. (Courtesy of SMHI)

the production of harmful toxins [4]. Algal blooms occur in all types of water: at

sea, around the coast, lakes, and streams, both in Sweden and abroad. Usually,

algal blooms are mostly near the water surface because the sunlight is strongest

there. According to [5], algal blooms cause human illness, large-scale mortality

of fish, shellfish, mammals, and birds, and deteriorating water quality. Important

questions are why these phenomena occur and why they have been growing over

the past years. One of the reasons is climate change, as discussed in [6]. In that

study, they infer that climate change will influence marine planktonic systems

globally and that it is conceivable that algal blooms may increase in frequency

and severity. Higher temperatures and ocean stratification are beneficial for al-

gal bloom species. Also mentioned in [6], agricultural practices and other land

usage are important.

These toxins can cause significant harm to marine ecosystems and pose a

danger to human activities in the Baltic Sea, such as tourism and aquaculture.

Accurate information about algal blooms’ location and movement patterns is

crucial to monitor and mitigate these detrimental effects. Traditional methods

for observation, such as satellite imaging or ship-towed sensors, are generally

unable to provide measurements at the spatial and temporal resolutions required
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Figure 1.2: SINMOD simulation of concentration of flagellates in the Norwe-

gian sea. (Courtesy of SINTEF)

to understand dynamic ocean phenomena [7]. While remote sensing with satel-

lites can offer a broad overview, such data is weather-dependent and prone to

false positives in coastal areas. Thus, there is a significant scientific and societal

interest in obtaining in situmeasurements and developing systems for automated
monitoring.

There are many studies on the dynamical modeling of algal blooms. There

have been simulation studies of the dynamics of algal blooms, specifically di-

atoms, and flagellates, two species of algal blooms. Throughout this thesis, we

will use SINTEF’s numerical ocean model simulation system called SINMOD.

Fig. 1.2 shows a snapshot of a SINMOD simulation of flagellates near the Nor-

wegian Sea coast. Each pixel is about 100 meters, so the image is about 35 km

longitude and 18 km latitude. Also, an algal bloom is defined as an area with

concentrations above a certain threshold, for example, above 0.13mg/m3. There

is an algal bloom shape in the upper center of the figure and a part of another

algal bloom shape in the upper right corner. In most results, this simulated abun-

dance and distribution of diatoms and flagellates change remarkably during the

highly dynamic spring bloom, and during the summer [8]. In [9], it is stated that

future advances in modeling will occur through the junction of models and data,
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Figure 1.3: Satellite data collected by SMHI. Left: Taken on the 5th of August

2019. Right: Taken on the 6th of August 2019. Legend: Orange for high algae

concentration; yellow for risk of high algae concentration; grey for the presence

of clouds; and black for missing data. (Courtesy of SMHI)

using data to conceptualize models and using models to understand data. This

chapter reviews many available dynamical models and the need for modeling

harmful algal blooms.

There are a few approaches to solving the problem of algal bloom data col-

lection and modeling. Two of the most common methods are satellite imagery

and monthly missions on a manned research vessel. Using satellite imagery,

SMHI has been monitoring the algae situation since 2002 through the Baltic

Algae Watch System [10]. This is a satellite-based monitoring system for blue-

green (cyanobacteria) algal blooms in the Baltic Sea. Fig. 1.3 represents the data

SMHI collected in the summer of 2019, available on their website. Comparing

the data from the two consecutive days illustrates how noisy and unpredictable

the satellite imagery on algal blooms can be. In the left image, we can see most

of the Baltic Sea and thus infer the location of the algal blooms. However, in the

right image, one day after, we can barely locate the algal blooms, for instance,

off the coast of Stockholm. Clouds cause this difficulty, a common occurrence

in this region. In fact, [11] states that turbid coastal and inland waters are a ma-
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Figure 1.4: SMHI’s research vessel mission on the report of July 2019. Leg-

end: Red for a high frequency of data collection; dark blue for monthly data

collection; light blue for nutrient mappings; and black line for the vessel’s path.

(Courtesy of SMHI)

jor challenge of atmospheric correction. Local measurements are taken using

a long list of sensors and a team of researchers using a research vessel. The

procedure and results of each mission are detailed in a report. Fig. 1.4 repre-

sents one mission in the report of July 2019 [12]. This figure represents the plan

for data collection, including fixed monitoring stations and defined collection

points through which the research vessel would pass and collect data.

There is also interest in studying river fronts to understand the dynamics of

estuarine circulation and time scales of river flow changes that affect the disper-

sion of contaminants originating from runoff and wastewater discharges [14].

Typically, the river front has a distinct color or surface temperature. Therefore,

river fronts are also studied using numerical models and satellite imagery [15] or

by taking water samples or doing Conductivity Temperature and Depth (CTD)
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Figure 1.5: Four USVs "duckling" used in [13]

casts from a manned vessel. However, satellite imagery has poor temporal and

spatial resolutions, is affected by cloud coverage (as seen in Fig. 1.3), and can

only provide a 2D front characterization [16]. AUV-based field studies are now

addressing some of these limitations because AUVs can sample the water col-

umn continuously and may adapt the sampling strategy to the observations [17].

The solution we provide seeks to substitute this expensive manned mission

that occurs once a month with a more affordable, continuous, and autonomous

option. For example, with a multi- or single-agent setup using agents such as

the Unmanned Surface Vehicle (USV) from KTH, as seen in Fig 1.5, and an

algorithm capable of autonomously following and enclosing algal blooms tar-

gets or fronts. Multi-agent systems are particularly advantageous for monitoring

and detection tasks in ocean environments because they simultaneously enhance

coverage of larger spatial areas, thus reducing the time required to survey the

ocean. These formations can be tailored to the shape and dynamics of the ocean

features, such as circular blooms or ocean fronts. Furthermore, the redundancy

provided by multiple agents within a formation offers robustness against sensor

noise or communication failures, which is critical in unpredictable environments

like the ocean.
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Figure 1.6: Tracking an algal bloom using a multi-vehicle system with local

sensors and a satellite

1.2 Research questions
In this thesis, we consider the problem of developing estimation and control al-

gorithms to track ocean features using AUVs. As shown in Fig. 1.6, we consider

a system composed of a satellite that provides noisy and cloudy imagery once

a day to a system containing one or multiple AUVs. Each of the AUVs in the

system is equipped with a GPS receiver for localization and various types of

sensors, depending on the features we would like to track and map. One of the

most pragmatic examples of such a feature is algal blooms, as illustrated in the

figure. The ocean feature to track may be static or dynamic, and it may be a

circular shape or a long front. Changes may occur quickly or slowly, according

to wind, temperature, ocean currents, etc.

This thesis considers the following research questions:

1. How to control a multi-AUV system to a desired formation?

2. How to guarantee convergence to the feature in an evenly spaced forma-

tion?

3. How to follow and map an ocean feature using a single- or multi-AUV

system?

4. How to estimate an ocean feature using local AUV measurements and

satellite imagery?
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cr Db
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Figure 1.7: Scheme of the estimated c and r as well as the angle βi measured
from c between two agents at positions pi+1 and pi.

5. How to design and execute an experimental test in which an AUV tracks

an ocean feature using the developed solutions?

Chapters 3 and 4 answer Questions 1, 2, 3, and 4 with estimation and cir-

cumnavigation protocols that guarantee convergence of a multi-AUV system

towards a circular target in a regular polygon formation. Chapter 5, 6, and 7

answer Questions 3 and 4 with estimation and control algorithms for tracking

ocean feature fronts using a single-agent system. Chapter 8 answers Question 5.

We design estimation and control algorithms for all chapters that match the

problem’s constraints and objectives. The estimation algorithms in this thesis

use two sets of variables: system state variables and measurement variables.

The control algorithms use three sets of variables: system state, measurement,

and estimated variables (from the estimation algorithm). Fig 1.7 illustrates an

estimation and tracking scenario to help us introduce the three types of variables.

In this scenario, we consider a multi-agent system estimating features that can

be represented by a circular target and maintaining a polygon formation around

it. The variables for the state of the system are the position and velocity of each

agent defined as pi and ṗi, for i = 1, . . . , n, respectively, where n is the number
of vehicles. The measurement variables concern the distance of a vehicle to the

target. We define the distance to the center of the target as Dc
i and the distance

to the boundary of the target Db
i . We also define the angle between agent i and

agent i + 1 as βi. After estimating the target’s location, size, or curvature, we
obtain the estimated variables, defined as the center c and the radius r. The
control algorithm is defined as a function of these variables:

ui = f(pi,pi+1, ĉ, r̂, D
c
i , D

b
i )
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Figure 1.8: Example of a multi-agent system of 4 robots tracking an algal bloom

feature.

We also design estimation algorithms which, in this example, corresponds to

computing ĉ and r̂ based on pi, pi+1, c, r, D
c
i , and D

b
i .

The problem we consider is how to design the control law and the estimator

to ensure the tracking and formation objectives. In this scenario, such objectives

would be to 1) guarantee convergence to the boundary of the target and 2) space

the AUVs equally along the boundary. Fig. 1.8 shows how four AUVs success-

fully track an algal bloom target. Notice how the vehicles are very close to the

boundary and equally spread across the shape.

We introduced the complex nature of the problem, highlighting the diver-

sity of ocean features, the dynamic environmental factors that influence them,

and how current technology isn’t enough. We have also clarified the role of

state, measurement, and estimated variables in our algorithms, providing a com-

prehensive framework for understanding our proposed solutions. The research

questions presented here guide the subsequent chapters, with each chapter ad-

dressing specific aspects of the problem.

1.3 Thesis Outline and Contributions
In this section, we provide an overview of the thesis. We describe each chapter’s

contents and contributions and indicate the publications upon which they are

based.
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Chapter 2: Background
In Chapter 2, we provide the background of the thesis by analyzing related liter-

ature. It contains state-of-the-art solutions for the previously formulated marine

sampling problem, including multi-agent and single-agent systems. We first an-

alyze the tools and technologies available for marine sampling and their usual

applications and shortcomings. Within multi-agent systems, we overview the

main challenges in cooperation and formation control and the main arrange-

ments such as leader-follower and decentralized coordination. We also evaluate

target tracking and estimation as a common application for these systems. We

review different control and estimation methods within single-agent systems,

focusing mostly on AUVs. Finally, we delve into adaptive sampling methods for

front tracking, outlining different fronts.

Chapter 3: Leader-based Adaptive Target Estimation for Multi-
agent Systems
Chapter 3 considers the problem of tracking a mobile target using adaptive es-

timation while circumnavigating it with a system of AUVs. The mobile target

considered is an irregular dynamic shape approximated by a circle with a mov-

ing center and varying radius. The AUV system is composed of n AUVs, of
which one is equipped with an unmanned aerial vehicle (UAV) capable of mea-

suring both the distance to the boundary of the target and its center. The AUV

equipped with the UAV uses adaptive estimation to calculate the location and

size of the mobile target. The AUV system must circumnavigate the boundary

of the target while forming a regular polygon. We design two algorithms: One

for the adaptive estimation of the target using the UAVs measurements and an-

other for the control protocol to be applied by all the AUVs in their navigation.

The convergence of both algorithms to the desired state is proven up to a limit

bound. Two simulated examples are provided to verify the performance of the

algorithms designed.

This chapter is based on the following contribution:

J. Fonseca, J. Wei, T. A. Johansen, and K. H. Johansson, “Cooperative circum-

navigation for a mobile target using adaptive estimation,” CONTROLO 2020,

Vol. 695, p. 33-48.
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Chapter 4: Decentralized Target Estimation for Multi-agent Sys-
tems
Chapter 4 proposes a reliable method to track a target using a set of AUVs. A

satellite image indicates the existence and initial location of the algal bloom for

the deployment of the robot system. The algal bloom area is approximated by a

circle with time-varying location and size. This circle is estimated and circum-

navigated by the robots, which can sense its boundary locally. A multi-agent

control algorithm is proposed to continuously monitor the dynamic evolution

of the algal bloom. The algorithm comprises a decentralized least squares esti-

mation of the target and a controller for circumnavigation. We prove the conver-

gence of the robots to the circle in equally spaced positions around it. Simulation

results with data provided by the SINMOD ocean model are used to illustrate

the theoretical results. We also consider the extension for irregular shapes. We

assume that each vehicle measures its distance to the boundary of the target and

whether it is inside or outside such target. The convergence of both algorithms

to the desired state is proven up to a limit bound. Two simulated examples are

provided to verify the performance of the algorithms designed.

This chapter is based on the following contribution:

J. Fonseca, J. Wei, K. H. Johansson, and T. A. Johansen, “Cooperative de-

centralized circumnavigation with application to algal bloom tracking,” 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

p. 3276-3281.

Chapter 5: Linear Front Approximation for Single-agent Sys-
tems
Chapter 5 considers the problem of tracking and mapping a river front with an

AUV. Our approach estimates the front direction and adapts the vehicle’s trajec-

tory to retrieve the maximum number of perpendicular transects to the front to

improve themapping performance. The novel aspects of the approach include an

exploration phase, in which essential parameters of the front are estimated, the

adaptation strategy, encompassing tracking and mapping, and the use of several

parameters to enable the user to select and configure the algorithm, as well as to

pick the initial deployment locations, according to the environmental conditions.

The approach is evaluated in simulation with the help of a high-resolution hy-

drodynamic model, considering different ocean and meteorological conditions.
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This is done with the help of parameterizable motion control algorithms to en-

able adaptation to these time-varying conditions.

This chapter is based on the following contribution:

D. Teixeira, J. Sousa, R.Mendes, and J. Fonseca, “3D Tracking of a River Plume

Front with an AUV,” IEEE OCEANS 2021, San Diego-Porto, p. 1-9.

Chapter 6: Least Squares Front Estimation for Single-agent
Systems
In Chapter 6, we propose an algorithm for estimating the gradient of chloro-

phyll a concentration and a control law for the AUV heading. We run a numer-
ical evaluation of an algal bloom front tracking strategy using Baltic sea data.

We define the front as a dynamic curve corresponding to the level set of the

chlorophyll a concentration with reference value obtained from satellite data.
The AUV records its position and the concentration at each position. The es-

timation is performed at each timestep in a receding-horizon fashion using the

latest data points collected by the AUV. The control input is a heading reference

computed as a function of the estimated gradient, such that the AUV moves to-

wards the front when it is far away and along the front when it is close to it. The

AUV will remain close to the front after reaching it for the first time.

This chapter is based on the following contribution:

J. Fonseca, M. Aguiar, J. Sousa, and K. H. Johansson, “Algal Bloom Front

Tracking Using an Unmanned Surface Vehicle: Numerical Experiments Based

on Baltic Sea Data,” IEEE OCEANS 2021, San Diego-Porto, p. 1-7.

Chapter 7: Gaussian Process Front Estimation for Single-agent
Systems
Chapter 7 proposes an algorithm containing a control law, a Gaussian Process

(GP) estimator, and a sensitivity analysis with an estimation method compari-

son. We implement a path-planning guidance law with adaptive sampling for

controlling the AUV heading. This control law receives information on the po-

sition of the AUV, the chlorophyll a concentration measurement it took, and the
estimated gradient of the chlorophyll a concentration. We analyze the perfor-
mance of the control law for different sensor uncertainty levels of chlorophyll a
concentration, with full AUV and chlorophyll a concentration sensor model.
We propose an algorithm using GP that estimates the gradient of chlorophyll a
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concentration. The AUV records its position and chlorophyll a concentration
as it moves. The estimation is updated at each timestep by fitting a GP model

with the latest data points collected by the AUV. We run a sensitivity analysis in

which we vary the standard deviation of the chlorophyll a sensor and measure
the impact on the performance of the control law and the estimation method,

considering the full AUV and chlorophyll a sensor model. We consider two es-
timationmethods, one based onGaussian Process regression and the other based

on least squares regression.

This chapter is based on the following contribution:

J. Fonseca, A. Rocha, M. Aguiar, and K. H. Johansson, “Adaptive Sampling

of Algal Blooms using an Autonomous Underwater Vehicles and Satellite Im-

agery,” 2023 IEEEConference onControl Technology andApplications (CCTA),

Bridgetown, Barbados.

Chapter 8: Marine Experiments
In Chapter 8, we design an experimental setup and present the results of a realis-

tic simulation and a field experiment in the Baltic sea. We design an experimen-

tal setup consisting of a cyber-physical system integrating the AUV software,

the AUV hardware, the user interface, and a realistic simulator. The AUV soft-

ware includes numerous packages that can be divided into the behavior tree,

the algal bloom front tracking, the onboard controllers, and the dead-reckoning.

The algal bloom front tracking library has been developed for the present work

and includes the control law and two implemented estimation methods. The

algal bloom front tracking package was also developed for the present work

and is responsible for interfacing with the other AUV packages, simulating the

chlorophyll a sensor, and plotting. We provide experimental results from two
surveys in the Stockholm archipelago in the Baltic Sea. In these experiments,

we demonstrate that the proposed algorithm performs well in the real-time real-

world scenario and compare them to a simulation under experiment conditions.

We also examine the sources of error, namely surface waves that influence the

AUV’s movement but also partially occlude the GPS receiver, which introduces

noise on the GPS-measured position of the AUV.

This chapter is based on the following contribution:

J. Fonseca, S. Bhat, M. Lock, I. Stenius, and K. Johansson, “Adaptive Sam-

pling of Algal Blooms Using Autonomous Underwater Vehicle and Satellite
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Imagery: Experimental Validation in the Baltic Sea,” submitted to IEEE Jour-

nal of Oceanic Engineering.

Chapter 9: Conclusions and Future Work
Finally, in Chapter 9, we conclude the present thesis with a summary and dis-

cussion of the results and directions for future work, indicating some possible

extensions of this thesis and future research directions.

Appendix A: Citation Analysis
Appendix A follows a citation analysis that reflects on the articles cited in this

thesis and, more broadly, on the article diversity of the decision and control

systems and maritime robotics fields.

Publications not included in the thesis
The following publications are not covered in this thesis but are related to the

work presented here.

Z. Yang, J. Fonseca, S. Zhu, C. Chen, and K. H. Johansson, “Adaptive Estima-

tion for Environmental Monitoring using an Autonomous Underwater Vehicle,”

2023 IEEE Conference on Decision and Control (CDC), Singapore.

Z. Yang, J. Fonseca, S. Zhu, C. Chen, and K. H. Johansson, “Distributed For-

mation Control for Environmental Monitoring: A Gradient Estimation-based

Approach,” submitted to IEEE Transactions on Automatic Control.





Chapter 2

Background

This chapter provides a background for the thesis by analyzing related liter-

ature. It contains the state-of-the-art solutions for the problems introduced in

Section 1. Most of those solutions consist of autonomous systems for marine

sampling applications. These include single-agent systems such as stand-alone

AUVs and multi-agent systems such as swarms of AUVs or heterogeneous sam-

pling networks consisting of AUVs, buoys, remote sensing, and others. In the

field of multi-agent systems, some relevant challenges lie in the cooperation and

formation control between agents, resulting in different arrangements, such as

leader-follower or decentralized. This type of system tends to be ideal for target

tracking and circumnavigation applications. When looking at single-agent sys-

tems, the challenges focus on the performance of the single agent, namely, its

ability to estimate an unknown field and adapt its movement with respect to the

changes in the field, which is referred as adaptive sampling. Naturally, the chal-

lenges regarding single-agent performance are also encountered in a multi-agent

system.

The rest of this chapter is organized as follows. In Section 2.1, we introduce

the different sampling platforms commonly used for marine sampling. In Sec-

tion 2.2, we discuss current work on multi-agent systems for target tracking for

multiple arrangements regarding cooperation and formation control. Recent de-

velopments in single-agent systems follow in Section 2.3, focusing on adaptive

sampling for front tracking.

17
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ROVs (remotely operated vehicles) 

explore habitats far below the surface

Plankton nets collect phytoplankton 

and zooplankton samples 

Satellite tagging tracks migratory 

species such as turtles, fish, sharks, 

mammals, and seabirds

Gliders and Argo floats travel long 

distances on very little power to 

gather ocean climate data

Collector plates are used to sample 

invasive tunicate species that attach 

to them
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LiDAR (light detection and ranging) 

is a remote sensing technology used 

to monitor habitats from the air

Research vessels are used to 

conduct multispecies and acoustic 

surveys

Satellites gather data and images 

year-round about temperature, sea 

ice, and phytoplankton

Observers document occurrences 

of seabirds and marine mammals

Rosettes collect water samples 

and carry sensors to measure 

environmental conditions throughout 

the water column
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Oceanographic missions support 

multiple technologies and ocean 

monitoring

Small drones with cameras are used 

to take aerial photos of habitats and 

species

Buoys and other moorings use 

sensors to take frequent 

measurements of ocean conditions 

at a single location for up to a year 

Aerial surveys are used to monitor 

marine mammals, seabirds, and 

habitats
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Trawl nets collect samples of 

invertebrates and fishes

Sonar is used to collect data on 

fishes and zooplankton in the water 

column and to conduct hydrographic 

surveys and classify seafloor habitats

SCUBA divers collect samples and 

data in coastal areas

Ocean Sampling Technologies
Technologies—old and new—help to fill gaps in knowledge of Canada’s vast and complex oceans
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Figure 2.1: An illustrated diagram shows a simplified side view of the ocean and

coastline withmultiple types of sampling technologies used to collect data about

ocean science. Each illustration is linked to a number describing the technology.

(Courtesy of Government of Fisheries and Oceans Canada [18])

2.1 Marine Sampling Platforms
There has been significant work in investigating and developing solutions for

marine sampling. In Fig. 2.1, several examples of technologies and platforms

help fill the marine sampling knowledge gap. Notably, less than one-third of

these examples require direct human intervention, and less than one-fifth can

be considered autonomous. Regardless of the level of automation and human

intervention, we can verify that worldwide, the solution for marine sampling is

always the product of different sampling platforms and technologies for varying
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applications. Beyond different platforms, a study [19] found that a comprehen-

sive approach to ocean monitoring should connect academic practices and local

community and indigenous practices. This Section gives an overview of themost

commonly used sampling platforms and technologies for marine sampling.

Some of the most used platforms and technologies for marine sampling in-

clude satellites, research vessels, floats, gliders, or AUVs. Satellite imagery of-

fers broad datasets with varying resolutions but falls short for shallow waters

when measuring algal blooms. This is because satellite sensing relies on chloro-

phyll a reflectance, which occurs for any underwater plant beyond algal blooms.
There is a high density of plants in shallow waters and, thus, many false posi-

tives for algal blooms. Despite the shortcomings of satellite imagery for coastal

data, alternate solutions for near-shore regions have been the topic of extensive

research for the past 50 years in efforts to bridge that gap [20]. For example, in

[21], the authors propose a novel wavelet analysis with satellite data from repeat-

ing paths for coastal coverage. On the other hand, several solutions for in situ
data collection, such as research vessels, generally use towed platforms integrat-

ing cameras, sensors, acoustic devices, and sidescan data [22]. In some cases,

they also use underwater electronic holographic cameras for studying marine

organisms such as plankton [23].

Focusing now on autonomous in situ sampling, one of the most widely used
platforms is the profiling float. This float moves with underwater currents and

is sometimes referred to as a Lagrangian float in the literature. Profiling floats

are more controllable in regions of more diverse currents, but controlling the

horizontal motion of a profiling float remains challenging [24]. Despite their

limited controllability, profiling floats such as in the Argo Program are perhaps

the greatest international collaborative effort in the history of oceanography and

provide researchers with open access to comprehensive data sets [25]. Under-

water gliders are more controllable than floats; in [26], the authors who built

the glider "Spray" define gliders as autonomous profiling floats that use a buoy-
ancy engine to move vertically and wings to glide horizontally. The creators of
the glider "Slocum" stated that their glider originated from the idea of adding

horizontal propulsion to floats [27]. The "Seaglider" [28] is another example of

one of the first gliders to be developed. With the development of gliders, the

problem of under-actuated controllability has been a subject of analysis [29].

Gliders fall short in deterministic controllability, usually have a very limited

sensor payload, and require a minimum operating depth of approximately 50m.

These make them unsuitable for coastal applications in shallow water. On the
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Figure 2.2: Examples of the variety of autonomous underwater vehicles world-

wide. (Courtesy of Covert Shores)

other hand, AUVs can carry different payload sensors, have better controllabil-

ity, and operate at multiple depths.

AUVs are autonomous and highly controllable underwater vehicles that can

be shaped and sized with great variety, see Fig. 2.2, and have been considered

for solving the environmental sampling problem. One of the most common so-

lutions in the literature is the open-loop scenario with a fixed sampling pattern.

The most widely used sampling pattern is, undoubtedly, the lawn-mower [30],

which has been used for both single-agent [31] and multi-agent scenarios [32].

However, other relevant methods, such as the spiral and circular patterns in [33],

aim to improve efficiency and robustness. Or the oval spiral coverage strategy

to plan coverage paths that better suit oval-shaped areas of interest [34]. While

these open-loop strategies enable and even guarantee coverage of survey areas,

they are inherently not designed to react or respond to changes in the observed

features. In such cases, there is great motivation to close the loop.
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Figure 2.3: Pictographic representation of the Portuguese ocean and land terri-

tory.

2.2 Multi-agent Control for Marine Sampling
In this Section, we overview the challenges and developments of multi-agent

systems for the application of marine sampling. Marine sampling is a field that

has been growing over the past years as the need for ocean monitoring has in-

creased. Unmanned vehicles have been recognized to allow higher precision

and cost efficiency levels in many research expeditions [35]. Moreover, using a

multi-agent system introduces more robustness by eliminating the single point

of failure. As a result, control of multi-agent systems presents itself as an essen-

tial component of the problem of marine sampling.

Marine sampling is one of this decade’s key challenges and prominent in-

vestments. There is a need for a sustained, persistent, and affordable presence

in the oceans. Oceans cover 96% of the Earth, thus making ocean observation

a problem on a truly planetary scale. This problem is particularly important to

countries with plenty of ocean territory, such as Portugal, as depicted in Fig. 2.3.

In a book on the future of the Portuguese ocean, Sousa et al. [36] describe that

constant ocean monitoring is necessary, albeit not an easy task. They claim that
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Figure 2.4: Design, construction, and operation of unmanned underwater, sur-

face, and air vehicles development of tools and technologies for the deployment

of networked vehicle systems. (Courtesy of LSTS [37])

some key applications are understanding and monitoring climate change, ocean

acidification, unsustainable fishing, pollution, waste, loss of habitats, biodiver-

sity, shipping, security, and mining. They further claim that such goals can only

be achieved by an incremental and multi-dimensional approach including two
steps: First, an increase in the number of systems in operation in the oceans with

new fleets of robotic vehicles of unprecedented spatial and temporal resolution.

Second, networking existing systems and new robotic vehicle systems for co-

ordinated adaptation to observational needs. An illustration of such a system is

represented in Fig. 2.4.

Over the past few decades, a vast body of research on multi-agent systems

has been conducted. Compared to a more complex single agent, their durability,

affordability, and efficiency are frequently the causes of such interest. A multi-

agent system is composed of interconnected agents coordinated to complete a

designated task. Each agent has its dynamics and communicates with a subset

of the other agents, possibly influencing each other’s decisions. We can identify

various types of multi-agent systems depending on two factors: each agent’s

sensing capability and the interaction topology of the agents [38]. Multi-agent

systems are sometimes inspired by multi-organism partnerships, for example,
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ants building an underground home, birds flying energy efficiently, or even hu-

mans working together on a project. Multi-agent systems, for example, systems

of AUVs, can be applied to monitor harmful algal blooms in the Baltic and Nor-

wegian seas. These algal blooms threaten the environment and human health;

therefore, there is a growing need to study their evolution in real-time.

Unmanned vehicles are especially useful in difficult or dangerous environ-

ments and when real-time data exchange is necessary [39]. In [40], it is stated

that autonomous systems are becoming more powerful and utilize the capabili-

ties of several types of devices, such as UAVs, USVs, and AUVs.

2.2.1 Cooperative Control of Multi-agent Systems
Multi-agent systems present numerous control challenges. The benefits that co-

operativemulti-agent systems offer have inspired extensive research efforts.Mur-

ray [41] classifies multi-agent systems challenges into three main categories:

(i) the uncertainty caused by inter-agent communications and distributed opera-

tion, (ii) system complexity due to the problem size and coupling between tasks,

and (iii) scalability to a potentially large collection of agents. Recently, Cao et

al. [42] defined four main directions of research: consensus, formation control,

optimization, and estimation. Cooperative circumnavigation for target tracking

is a particular problem within cooperative multi-agent control. The literature on

this topic is, in fact, quite extensive and spans over 20 years of research. Some

examples are formation control or cooperative circumnavigation of a known

target, formation, and estimation for tracking a moving target defined as a unit

point, and finally, more recently, estimation protocols for moving targets of par-

ticular shapes and sizes.

Many algorithms within multi-agent formation for target tracking are related

to formation control to observe a known target and, therefore, do not require an

estimation or circumnavigation. This type of work focuses, for instance, on fast

and energy-efficient convergence of each agent to a desired position while some-

times optimizing communication costs. In Fig. 2.5, we see a classical example

of formation control without estimation or circumnavigation. One of the earli-

est results proposes a path-following algorithm for formation control of a multi-

agent system [43]. The authors prove that if the tracking errors are bounded,

their method stabilizes the formation error. However, it is assumed that there is

perfect information about the path to follow. In [44], a control protocol is de-

signed for avoiding obstacles and inter-agent collisions while converging to a

specified target position and forming an equilateral triangular formation around
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Figure 2.5: Three planes maintain triangular formation while following a path.

the target. Also, in [45], [46], [47], and in Section 6.3.1 of [48], formation proto-

cols are proposed where the robots are capable of converging towards a desired

pattern by acquiring their distances between each other. Additionally, in [49]

and [50], controllers are synthesized for a swarm of agents to generate a de-

sired two-dimensional geometric pattern specified by a simple, closed planar

curve. It is assumed that the shape is given to the swarm and is not estimated in

real-time. Finally, an example of optimal circle circumnavigation is presented

in [51], where the objective is area scanning. Note that the literature above does

not cover target estimation.

2.2.2 Target Tracking and Circumnavigation
There is extensive work on circumnavigation algorithms that integrate forma-

tion control with target estimation. A target is generally defined as a moving

unit point, and the agents measure and estimate its location. The algorithms

tend to be either distance-based, bearing-based, or both. One of the first works

on distance-based algorithms deals with agents moving around the target while

forming an optimal geometry [52]. In [53], there is only one agent and, there-

fore, no formation control. This agent can measure its distance to the unit point

target and converge to it using sliding mode control. A closely related work [54]

proposes an adaptive protocol to circumnavigate around a moving point. The

authors employ adaptive estimation for point tracking at a known distance. In

[55], a distance-based algorithm for pattern formation is proposed, which guar-

antees convergence while tracking the target. The agents detect their distance to
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other agents and themoving target and follow it while circumnavigating. [56] de-

vises an algorithm such that one robot can circumnavigate a circular target from

a prescribed radius using bearing measurements. Several other works propose

similar algorithms considering bearing measurements and focusing on other

challenges. Such as the challenge of measurement noise amplification, consid-

ered in [57], by proposing an estimator that avoids using explicit derivatives

of measurements. Also, the challenge of collision avoidance and experimental

verification is the focus in [58]. Related results [59] and [60] use either bearing

or distance measurements to the target while using a network of autonomous

agents to circumnavigate. Circumnavigation is done with a predefined distance

to the target, as in [61], where a localization and circumnavigation algorithm of

a slowly drifting target is proposed. Here, the authors analyze distance-based,

bearing-based measurements and various communication protocols. The target

is the biggest distinction between theseworks and thosewe develop in this thesis.

In the above articles, the target is assumed to be a unit point, and the agents must

circumnavigate it at a predetermined relative distance. In contrast, our problem

deals with a dynamic irregular shape.

A multi-agent system for tracking oil spill plumes was successfully simu-

lated in a realistic test environment by Fahad et al. [62]. This is an estimator-
controller system based on the model of a front with a single-point source that

causes fluid propagation through advection and diffusion. Li et al. [63] devel-
oped a tracking approach that relies on specific properties of the oil front. Thus,

it is unsuitable for other marine features such as river fronts. There is also work

on multi-agent formation control and target tracking when the target is not a

unit point. For example, [64] proposes a protocol for target tracking in 3D with

guaranteed collision avoidance. The difference is that in [64], it is assumed that

the target is a fixed object that may move and rotate but never change its shape,

which is different from this thesis´ objective. In the literature above, the authors

did not account for a shape-shifting target that requires constant measuring and

estimation while performing formation control for target circumnavigation.

2.3 Single-agent Control for Marine Sampling
In this Section, we consider systems consisting of a single agent for marine sam-

pling. Similar to multi-agent systems, single-agent systems are a cost-efficient

marine monitoring solution for severely undersampled territories and for un-

derstanding ocean phenomena. Single-agent systems are deemed particularly
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Figure 2.6: Plankton grows more prolifically at fronts where different water

masses meet. In this case, less-salty, less-dense water from the Atlantic Ocean

enters the Mediterranean Sea, where it meets saltier, denser Mediterranean wa-

ter. The denser water sinks beneath the lighter water. (Courtesy of WHOI [66])

useful for specific applications while maintaining the possibility for extension

to a more complex multi-agent system that may offer more coverage and robust-

ness. For example, in a recent survey [65], the authors consider environmental

sensing one of the three main impact areas of AUV research. In this thesis, we

consider the application of tracking marine fronts. Adaptive sampling is also a

relevant tool for in-situ monitoring tasks aided by external data and numerical

models.

2.3.1 Front Tracking
Front tracking is a unique yet widely researched topic for single-agent marine

sampling missions. Fronts are unique yet researched extensively because most

marine life converges toward them. Less dense water rises along fronts and

brings nutrients from the deep into the sunlit surface ocean, as illustrated in

Fig. 2.6. Phytoplankton flourishes in these nutritious areas, and so do zooplank-

ton populations. Fish then seek out these areas to feed off of Zooplankton [66].

We can further observe that fishing boats seek these fronts for squid fishing at
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Figure 2.7: On April 18 and 19, 2012, daytime chlorophyll concentrations (left)

and nighttime ocean lighting (right) line up in the South Atlantic. (Map by

NASA Earth Observatory, using data from the NASA Ocean Color Group [68]

and the VIIRS day-night band on Suomi NPP.)

night [67], where algal bloom presence directly correlates to fishing boat distri-

bution, as seen in Fig. 2.7.

As a result, front tracking has received increasing attention in recent years.

Ocean fronts are characterized by strong variations of some phenomena or vari-

ables such as algal blooms [69], salinity [70], temperature [71], Rhodamine dye

[72], oil propagation [73], or other water properties. Front tracking can be di-

vided into front estimation and agent control algorithms. Regarding front esti-

mation, various methods have been considered in the literature, such as model-

based estimation for front propagation [62] and local estimation of front direc-

tion [74]. Regarding agent control algorithms, we can find both multi-agent [75]

and single-agent strategies [76], as well as adaptive algorithms for tracking depth
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[77] and non-adaptive zig-zag algorithms for tracking upwelling fronts [78], or

velocity fronts [79]. Despite the large differences between these approaches,

there are a few common threads, namely the use of zig-zag tracking algorithms

for the agents tracking the front, since in most applications, there is a need to

collect data in and around the front; the use of either USVs or AUVs with the

application-specific sensor for local data collection. An AUV-mounted sonar,

capable of detecting hydrocarbon clouds, is at the core of an oil front track-

ing algorithm that detects the front without crossing it [80]. Zhang et al. [81]
proposed an approach to detect a horizontally oriented subsurface hydrocarbon

front located between depths of 1100 and 1200m caused by the 2010 Deepwater

Horizon oil spill in the Gulf of Mexico.

Marine robots have successfully tracked ocean isolines of salinity or tem-

perature. A segment of the open-ocean Northern Pacific Subtropical Front was

autonomously tracked with an AUV running a novel front core tracking algo-

rithm [82]. The parameters of the salinity front were first estimated to inform the

tracking algorithm. The proposed algorithm uses a novel model for the salinity

signature of the front. Previous algorithms model the salinity signature with a

linear function connecting the boundaries of the front. Outside of these bound-

aries, salinity is considered to be constant. Other algorithmsmodel this signature

as a smooth function, with the front located at the peak of the salinity gradient.

Belkin et al. [82] uses the front edges instead of the front axis to guide the front
core tracking algorithm. The vehicle follows the front axis by remaining inside

the front. This strategy has two main advantages: the distance traveled by the ve-

hicle is minimized because the front is not fully crossed like in a typical zigzag

approach, and the progression along the front progression is faster. Furthermore,

the risk of losing the front is small because the AUV is kept inside the front.

An upwelling front-tracking algorithmwas field-testedwith anAUV inMon-

terey Bay, CA [83]. The algorithm uses a yoyo vertical trajectory to measure

the temperature at different depths while crossing the front at different loca-

tions. The multiple front detection points are used to estimate the progression

of the front. A similar yoyo trajectory will be used in our implementation to

measure salinity at different depths. Analogous to the described system, mul-

tiple crossings of the front are then used to estimate the front’s progression. A

front-tracking algorithm for a thermal front caused by a nuclear power plant

outflow was implemented on a USV and successfully deployed in the field [84].

The algorithm proposed an adaptive zigzag trajectory based on measurements.

A front indication function then uses these measurements to signal if the vehi-
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cle is inside or outside the front. The authors conclude that the dependence of

this function on six different variables increases the robustness of the tracking

system. A similar zigzag-like trajectory is used in this thesis.

Cannell and Stilwell studied two approaches for static front tracking and

mapping [85]. In the first, an AUV travels a fixed path in the study area and then

returns a probabilistic distribution of the front based on the measurements and

path of the agent. The second approach is a non-parametric boundary tracking

algorithm that first runs a classification phase that identifies the two different

regions and proposes a probability distribution of the front’s boundary that is

then used to guide the agent along the front. These approaches do not apply to

the dynamic front of the Douro River. Zig- zag trajectories for tracking marine

fronts were experimentally validated with AUVs in [79]. The tracking system

generates an initial path for the vehicle based on previous characterization of

the front and using observations from different remote sensing agents.

There are also chemical fronts, such as a front of Rhodamine dye [86] or

an oil front propagation [62]. On the latter, the authors propose a model-based

estimator-controller for autonomous robots to track front propagation. This is

based on a model of advection-diffusion equation that describes point-source

pollution propagation in marine environments [63]. Unfortunately, this algo-

rithm does not apply to other ocean phenomena because it is built on the unique

properties of propagation of the oil front.

Coastal upwelling is also an example of an ocean phenomena front. It is a

wind-driven ocean process that brings cooler, saltier, and usually nutrient-rich

deep water upward. Upwelling fronts support enriched phytoplankton and zoo-

plankton populations [87], thus having great influences on ocean ecosystems. A

method for an AUV to autonomously detect and track an upwelling front was

developed in [76]. Here, the objective was to transect the front multiple times at

the same location to detect the front location. In [78], the method was extended

to implement the commonly used zig-zag through the front. While relevant, this

objective and application differ from our present thesis.

Oceanic thermal fronts are another example of biological importance and

dynamic evolution. In [71], a method was developed for a Wave Glider to de-

tect and track a thermal front autonomously. Similarly to the coastal upwelling

scenario, the protocol transects the front multiple times. Also, in [88], a 2D

adaptive front tracking algorithm was developed and applied to thermal fronts.

However, compared to zig-zag protocols, one weakness is that the start location

of the front-tracking mission affects the performance.
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2.3.2 Adaptive Sampling
Adaptive sampling is a type of intelligent behavior that allows an agent to make

decisions autonomously during a mission in response to the environment and

agent state changes. Having a closed-loop control architecture, an AUV can

perceive the environment, interpret the data, and take follow-up measures. Over

the past two decades, there has been significant effort in closing the loop using

adaptive sampling strategies. Adaptive sampling is a closed-loop control archi-

tecture in which an agent autonomously makes decisions during a mission in

response to environmental and agent state changes. As reviewed in [17], adap-

tive sampling can be divided into three objectives: source localization, front

determination, and tracking and mapping. These objectives can be realized for

different targets: thermoclines, algal blooms, oils spills, etc., using different ve-

hicle configurations: single-agent, multi-agent with leader-follower, cooperative

multi-agent, etc. In [89], the focus is on covering multiple thermoclines as they

evolve in time and space in a dynamic water column. In [90] and [91], the prob-

lem of source localization using amulti-agent system is approached as a gradient

climb with optimal formation to minimize the gradient estimate error.

An example of front determination is [92], where the authors use a single

AUV to find and track a salinity and temperature front while zig-zagging around

it. Considering the mapping problem, in [93], the authors evaluate how to find

the optimal path to maximize the accuracy of the field estimates for single and

multi-agent scenarios. Also, in [94], the front determination problem is con-

sidered with a single AUV zig-zagging the front, but for bathymetric contours.

In [74], a deep Chlorophyll maximum layer is tracked and mapped using three

agents moving adaptively - one on the surface, one tracking the layer, and one

mapping the area around the layer. Other examples include an adaptive sam-

pling algorithm that augments a standard Gaussian process (GP) with a nearest

neighbor prior [95]. Unlike our approach, this paper does not use external data

to aid the vehicle’s decisions, while being similar to our method of building a

GP model from measurements. Also, in [96], the authors propose a GP model

trained with forecasted data and updated in real-time with measurements. This

algorithm relies on a squared exponential kernel, which will be considered and

discussed further in the present thesis.

In this field, one challenge is integrating external data (satellite imagery,

numerical models and predictions, etc.) with local measurements (taken by au-

tonomous agents such as AUVs, buoys, gliders, or others). Consequently, this

extends to the problem of creating and maintaining databases with local marine
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Figure 2.8: Information flow from the different data sources based on ocean

observations, data management with cloud storage and local databases, and vi-

sualization of complete datasets. (This infographic is inspired by a similar one

presented in [97])

data sets to allow for data visualization. This problem is synthesized in Fig. 2.8.

In this thesis, we delve into the problem of how to aid ocean sampling missions

using external data. An early example uses a predictive ocean model to assist in

motion planning for steering an AUV to a high-valued location [98]. Here, it is

assumed that there is a predicted model for the day of the mission, which is not

available in this thesis’s scenario. Other related results include using knowledge

from previous missions to create a model [99] and using hydrodynamic and bi-

ological model systems as prior information [100]. Such adaptive sampling is

closely linked to data assimilation. Among the first works in data assimilation

for oceanic applications are [101], [102]. In [103], the data collected by the AUV

is augmented with remote sensing, buoys, a ship, particle imaging systems, and

discrete water samples. In [104], the authors use a genetic algorithm to opti-
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mize the deployment, measurements, and information gain of a team of AUVs

and mooring platforms. Such measurements are then included in an estimation

framework to estimate and forecast environmental parameters given a dynamic

ocean model. In [105], the authors propose using generic environmental models

that are updated with data collected by a team of AUVs to update the map used

by these vessels and, with it, perform mission-specific goals. Also, in [106],

a sparse and variational Gaussian process is trained with datasets of different

seafloor textures and then used for seafloor texture classification. Our approach,

in contrast, uses satellite data as prior in a Gaussian Process regression frame-

work that is similarly updated with local measurements from AUVs to create

high-resolution estimates of the environment around the autonomous agents.

Ocean ecosystems are greatly influenced by the structure and dynamics of

fronts [107]. Detection and tracking ocean fronts are important for investigating

the formation, evolution, and interaction of ocean water masses [108]. Knowing

the boundary between these water masses enables targeted sampling of the wa-

ters. As noted in the previous Section, an ocean front delineates the boundary

between water masses distinguished by physical, chemical, or biological char-

acteristics. Some examples of ocean fronts are algae, salinity, and temperature

fronts. A lack of efficient observations has hampered progress in understanding

the dynamics of fronts. For instance, global satellite measurements of ocean-

surface velocities and air-sea fluxes are only available at resolutions of a few

hundred kilometers [109]. Therefore, the present thesis suggests approaching

data collection using new unmanned sampling strategies for AUVs. AUVs can

performmeasurement runs over a long time at sea [110], making them a frequent

choice for oceanographic data collection [111].



Chapter 3

Leader-based Adaptive Target Esti-
mation for Multi-agent Systems

In this chapter, we discuss the problem of multi-vehicle target tracking. This tar-

get is an irregular dynamic shape approximated by a circle with a moving center

and time-varying radius. We will use adaptive estimation while circumnavigat-

ing the target with a system of AUVs. The multiple AUV system is composed

of n AUVs of which one is equipped with a UAV capable of measuring both
the distance to the boundary of the target and its center. This AUV equipped

with the UAV uses adaptive estimation to calculate the location and size of the

mobile target. The AUV system must circumnavigate the boundary of the target

while forming a regular polygon.

This chapter is organized as follows. In Section 3.1, we describe the system

mathematically and formulate the problem to be solved in the following section.

In Section 3.2, we design two algorithms: One for the adaptive estimation of the

target using the UAV’s measurements and the other for the control protocol to

be applied by all AUVs in their navigation. In Section 3.3, the convergence of

both algorithms to the desired state is proved up to a limit bound. Finally, in

Section 3.4, two simulated examples are provided to verify the performance of

the algorithms designed. Concluding remarks come in Section 3.5.

3.1 Problem Formulation
We consider the problem of tracking a shape using a multi-AUV system and a

UAV. This target shape may be very irregular and with time-varying parameters.

33



34 Leader-based Adaptive Target Estimation for Multi-agent Systems

Figure 3.1: 4 AUVs circumnavigating a circular algal bloom

We assume the shape is close to a circle, as seen in Fig. 3.1. The UAV provides

an initial image of the target, which confirms such an assumption and helps us

deploy the AUVs.

3.1.1 System description
We define this circle as

(c, r) ∈ R
3, (3.1)

where c = (x, y) and r are the circle’s center and radius, respectively.We denote
(ĉ, r̂) ∈ R

3 as the estimates of the circle. Then the UAV would provide initial

estimates ĉ(0) = (x̂(0), ŷ(0)) and r̂(0).
This UAV obtains data from the target and shares it with the AUVs so they

can move toward the target. The UAV constantly measures its distance from the

target, calculates its target estimates, and shares it with all AUVs. The measure-

ments consist of its distance to the center and to its boundary. Each AUV has

access to its GPS position and the AUV’s position in front of it, counterclock-

wise.

The multi-AUV system will jointly circumnavigate the target and provide

real-time information on different fronts. We define nAUVs and, using the UAV
information, they are initialized at positions pi(0), i ∈ [1, ..., n], which are
outside of the shape and form a counterclockwise directed ring on the surface.

The kinematic of the AUVs is of the form
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ĉ

A1

A8

A5
A3

p1

p2

p3
p4

β1
β2β3

β4

cr
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Figure 3.2: (Left) System with vehicles A1, A3, A5, A8 at positions p1, p4, p3,

p2, respectively. (Right) Estimated ĉ, r̂, real c, r, and angle βi between two
vehicles at pi+1 and pi.

ṗi = ui, i ∈ [1, ..., n], (3.2)

where pi is a vector that contains the position pi = [xi, yi]
� ∈ R

2 and

ui ∈ R
2 is the control input.

To avoid the AUVs concentrating in a region, in which case they may lose

information on other fronts, we would like to space them equally along the de-

fined circle. Therefore, we define the counterclockwise angle between the vector

pi − ĉ and pi+1 − ĉ as βi for i = 1, . . . , n− 1, and the angle between pn − ĉ
and p1 − ĉ as βn,

βi =∠(pi+1 − ĉ,pi − ĉ), i = 1, . . . , n− 1

βn =∠(p1 − ĉ,pn − ĉ).
(3.3)

Then, it holds that

βi(0) ≥ 0, and

n∑
i=1

βi(0) = 2π. (3.4)

This is represented in the left scheme of Fig. 3.2.
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Figure 3.3: The UAV estimates the center and radius of the target based on its

distance measurements and shares it with all AUVs. Each AUV i calculates its
control protocol.

Note that the �2-norm is denoted simply as ‖ · ‖ without a subscript. Now,
we can define the distance from the UAV to the center and the boundary of the

target circle as
Dc

1 = ‖c− p1‖
Db

1 = |r −Dc
1|,

(3.5)

respectively. Note that the UAV senses the distances to the target and then cal-

culates the target estimates. This UAV operation is represented in the left part

of Fig. 3.3.

After obtaining the target estimates, each AUV i would be able to calculate
its own distances D̂c

i and D̂
b
i

D̂c
i = ‖ĉ− pi‖

D̂b
i = |r̂ − D̂c

i |,
(3.6)

as represented in the right scheme of Fig. 3.2. We summarise each AUVs’ com-

putation scheme in the right part of Fig. 3.3.
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3.1.2 Problem statement
Definition 3.1 (Circumnavigation) When the target is stationary, i.e., c and r
are constant, circumnavigation is achieved if the AUVs

1. move in a counterclockwise direction on the boundary of the target, and

2. are equally distributed along the circle, i.e., βi = 2π
n .

More specifically, we say that the circumnavigation is achieved asymptotically
if the previous criteria are satisfied for t → ∞.

For the case with time-varying target, we assume that ‖ċ‖ ≤ ε1 and |ṙ| ≤ ε2
for some positive constants ε1 and ε2.

Now, we are ready to pose the problem of interest that will be solved in the

following sections.

Problem 1. Design a UAV estimator for c(t) and r(t) when distance mea-
sures (3.6) are available to the UAV, and design the control inputs ui for the

AUVs such that for some positive ε1, ε2,

‖ċ‖ ≤ ε1, (3.7)

|ṙ| ≤ ε2, (3.8)

there exist positiveK1,K2, andK3 satisfying

lim sup
t→∞

‖ĉ(t)− c(t)‖ ≤ K1ε1, (3.9)

lim sup
t→∞

|r̂(t)− r(t)| ≤ K2ε2, (3.10)

lim sup
t→∞

|D̂c
i (t)− r̂(t)| ≤ K3ε2, (3.11)

lim
t→∞βi(t) =

2π

n
. (3.12)

3.2 Adaptive Estimation and Control
This section proposes an estimation and control mechanism for Problem 1. We

consider nAUVs at positions pi and one UAV capable of measuring its distance

Db
i to the target boundary and its distance D

c
i to the target center.
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Then, it should estimate (c, r) from its distance measures, i.e., Db
i and D

c
i ,

and share the information with the AUVs. Each AUV calculates its desired ve-

locity, taking into account its angle βi to the next AUV and its distance to the
target center and boundary, obtained with the estimates of the target.

3.2.1 Adaptive estimation
This subsection relates to the protocol followed by the UAV for estimation. Re-

calling Fig. 3.3, we will construct the UAV estimator block. Motivated by [54],

we propose the following adaptive estimation of the radius r of the target using
the UAV A1 in position p1. Observe that

d

dt
(Db

1)
2 = 2(ṙ − Ḋc

1)(r −Dc
1). (3.13)

Assume the estimate of r is denoted as r̂, we have

1

2

( d
dt
(Db

1)
2 − d

dt
(Dc

1)
2
)
+ Ḋc

1r̂ = Ḋc
1(r̂ − r) + ṙ(r −Dc

1). (3.14)

Then for some positive constant γ, the dynamic

˙̂r = −γḊc
1

[1
2

( d
dt
(Db

1)
2 − d

dt
(Dc

1)
2
)
+ Ḋc

1r̂
]

(3.15)

can estimate the variable r under the persistent excitation condition on Ḋc
1. Per-

sistent excitation is key in establishing parameter convergence in adaptive iden-

tification [112], [113].

Definition 3.2 (Continuous time persistent excitation condition) [113] The func-
tion f ∈ L2

e(R
n) is said to be persistently exciting (p.e.) if there exist positive

constants ε1, T such that for all τ > 0,
∫ T+τ

τ
f(t)f(t)�dt > ε1In.

T will be termed an excitation period of f .

Then, in this case

d

dt
(r̂ − r) = −γ(Ḋc

1)
2(r̂ − r)− ϑṙ, (3.16)
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where ϑṙ = ṙ(γḊc
1(r−Dc

1) + 1) is bounded byM1ε2. Indeed, all its elements
are bounded byM1 > 0 and recall that |ṙ| ≤ ε2. Note that r −Dc

1 is bounded

because r and Dc
1 are also bounded. Furthermore, as it will be clear soon, ϑṙ

can be replaced by ϑṙ = ṙ(γV (r−Dc
1)+1) using equations (3.21) and (3.22),

where V is the bounded estimate of Ḋc
1.

However, the implementation of (3.15) needs the derivative of Db
1 and D

c
1,

which is not desired. It would require explicit differentiation of measured signals

with accompanying noise amplification. Thus, for some positive constant α, we
adopt the state variable filtering and then design the estimator as follows

ż1(t) = −αz1(t) +
1

2
(Db

1(t))
2 (3.17)

η(t) = ż1(t) (3.18)

ż2(t) = −αz2(t) +
1

2
(Dc

1(t))
2 (3.19)

m(t) = ż2(t) (3.20)

ż3(t) = −αz3(t) +Dc
1(t) (3.21)

V (t) = ż3(t) (3.22)

with initial conditions z1(0) = z2(0) = z3(0) = 0. Now, together with the
above dynamics, the estimator for r is given as

˙̂r = −γV
[
η −m+ V r̂

]
. (3.23)

We are interested in obtaining c from the measurements Dc
1 and D

b
1. Thus,

we must again use adaptive estimation for the target’s center c.
Observe that

d

dt
(Dc

1)
2 = 2(ṗ1 − ċ)�(p1 − c). (3.24)

Assume the estimation of c is denoted as ĉ, we have

1

2

( d
dt
(Dc

1)
2 − d

dt
‖p1‖2

)
+ ṗ�

1 ĉ = ṗ�
1 (ĉ− c) + ċ�(c− p1). (3.25)

Then the dynamic

˙̂c = −γṗ1

[1
2

( d
dt
(Dc

1)
2 − d

dt
‖p1‖2

)
+ ṗ�

1 ĉ
]

(3.26)
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can estimate the parameter c under some persistent excitation condition on ṗ1.

Indeed, in this case

d

dt
(ĉ− c) = −γ‖ṗ1‖2(ĉ− c)− ϑċ, (3.27)

where ϑċ = γċ�ṗ1(c − p1) + ċ is bounded byM2ε1. Indeed all its elements
are bounded byM2 > 0 and recall that |ċ| ≤ ε1. Note that c − p1 is bounded

because c and p1 are within a finite map. Furthermore, as it will be clear soon,

ϑċ can be replaced by ϑċ = γċ�V2(c− p1) + ċ using equations (3.30)-(3.31),
where V2 is the estimate of ṗ1 and it is bounded.

However, the implementation of (3.26) needs the derivative of p1 and D
c
1,

which is not desired. Therefore we use the previously defined equation (3.20)

for Dc
1 and redefine it as η2(t) = ż2(t) and add the following filter

ż4(t) = −αz4(t) +
1

2
p1(t)p

T
1 (t) (3.28)

m2(t) = ż4(t) (3.29)

ż5(t) = −αz5(t) + p1(t) (3.30)

V2(t) = ż5(t) (3.31)

with initial conditions z4(0) = z5(0) = 0. After updating (3.26) with the above
dynamics, the estimator for c is given as

˙̂c = −γV2

[
η2 −m2 + V T

2 ĉ
]
. (3.32)

3.2.2 Control Algorithm
This subsection relates to the protocol followed by the AUVs for control. Re-

calling Fig. 3.3, we will construct the AUV control block. Therefore, we want to

obtain the desired control input ui using the previously measured and estimated

variables.

The total velocity of each AUV comprises two sub-tasks: approaching the

target and circumnavigating it. Therefore we define the direction of each AUV

towards the estimated center of the target as the bearing ψi,

ψi =
ĉ− pi

D̂c
i

=
ĉ− pi

‖ĉ− pi‖ . (3.33)
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The first sub-task is related to the bearing ψi, and the second is related to its

perpendicular, Eψi. We define a rotation matrix E as

E =

[
0 1
−1 0

]
. (3.34)

Then, let us first consider the control lawui where δ is a parameter to be defined.

ui = ˙̂c+ ((D̂c
i − r̂)− 1

δ
˙̂r)ψi + βiD̂c

iEψi. (3.35)

The control actuation of an AUV is limited; therefore, we have to make sure

that the implemented control is within the actuation bounds, and so we introduce

Ui = δui (3.36)

where δ is the same as before. For a specific ui, it is possible to haveUi within

some specified bounds.

3.3 Convergence Results
In this section, we prove that the estimator and control algorithm proposed in

the previous section converge to the desired behavior.

Theorem 3.1 The initial condition satisfies D̂c
i (0) > r̂(0) > 0. Suppose ṗ1(t)

and Ḋc
1(t) are p.e., ‖ċ‖ ≤ ε1, and |ṙ| ≤ ε2. Consider the system (3.35) with the

control protocol (3.36), and the initialization satisfying ‖pi(0) − ĉ(0)‖ > 0,
then there exists K1, K2, and K3 such that circumnavigation of the moving
circle with equally spaced AUVs can be achieved asymptotically up to a bounded
error, i.e.

lim sup
t→∞

‖ĉ(t)− c(t)‖ ≤ K1ε1, (3.37)

lim sup
t→∞

|r̂(t)− r(t)| ≤ K2ε2, (3.38)

lim sup
t→∞

|D̂c
i (t)− r̂(t)| ≤ K3ε2, (3.39)

lim
t→∞βi(t) =

2π

n
. (3.40)
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Proof 3.1 The proof is divided into four parts. In the first part, we prove that
(3.37) and (3.38) hold. In the second part, we prove that the estimated distance
D̂c

i converges to the estimated radius r̂, or in other words, that (3.39) holds. In
the third part, we prove that the singularity of the bearing ψi is avoided. In the
last part, we show that the angle between the AUVs will converge to the average
consensus for n AUVs, βi = 2π

n , meaning (3.40) holds.

1. Firstly, we prove that (3.37) and (3.38) hold. The proof for boundedness
of the center (3.37) can be found on [54], Proposition 7.1. However, the
proof for the boundedness of the ratio needs to be derived in this chapter.
Then, we have that

˙̃r = ˙̂r = −γV
[
η −m+ V r̂

]
= −γV

[
η −m+ V (r̃ + r)

]
= −γV 2r̃ − γV

[
η −m+ V r

]
= −γV 2r̃ +G

(3.41)

where G = −γV
[
η − m + V r

]
. We know that |G| ≤ k1ε2 for some

k1, ε2 ≥ 0 because V is bounded and that |η − m + V r| < k2 we can
prove that for a Lyapunov function Wr =

1
2 r̃

2 we get

Ẇr = r̃ ˙̃r = r̃(−γV 2r̃ +G)

= −γV 2r̃2 + r̃G

≤ −γV 2r̃2 + k1ε2r̃

(3.42)

then we get that for Ẇr ≤ 0 to hold, −γV 2r̃2 + k1ε2r̃ ≤ 0 must hold.
So, we have that when r̃ ≥ k1ε2

γV 2 or r̃ ≤ −k1ε2
γV 2 , Ẇr ≤ 0 so that |r̃| is

within ±k1ε2
γV 2 . This error r̃ is then proved to converge asymptotically to a

ball since Ḋc
1 is p.e..

2. We prove that all AUVs reach the estimate of the boundary of the moving
circles asymptotically, i.e., limt→∞ ‖pi(t)− ĉ(t)‖ = limt→∞ D̂c

i (t) =
r̂(t), so (3.39) holds.
Consider the function Wi(t) := D̂c

i (t) − r̂(t) whose time derivative for
t ∈ [0,+∞) is given as

Ẇi =
(ĉ− pi)

�( ˙̂c− ṗi)

D̂c
i

− ˙̂r
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=− (ĉ− pi)
�

D̂c
i

δ((D̂c
i − r̂ − ˙̂r)ψi + βiD̂c

iEψi)− ˙̂r

=− (ĉ− pi)
�

D̂c
i

ψiδ(D̂c
i − r̂ − ˙̂r)− (c− pi)

�

D̂c
i

EψiδβiD̂c
i − ˙̂r

=− δ(D̂c
i − r̂ − ˙̂r)− ˙̂r

=− δWi.

Hence for t ∈ [0,+∞), we have D̂c
i (t) = δWi(0)e

−t+r̂(t)which implies
Wi is converging to zero exponentially.

3. Finally, we show that the angle between the AUVs will converge to the
average consensus for n AUVs, βi = 2π

n , so (3.40) holds.
Firstly, note that we can write an angle between two vectorsβi = ∠(v2, v1)
as

βi = 2atan2((v1 × v2) · z, ‖v1‖‖v2‖+ v1 · v2) (3.43)

and its derivative as

β̇i =
v̂1 × z

‖v1‖ v̇1 − v̂2 × z

‖v2‖ v̇2 (3.44)

where z = v1×v2
‖v1×v2‖ , v̂i =

vi
‖vi‖ , i = 1, 2.

Then, for v1 = pi − ĉ and v2 = pi+1 − ĉ we get

β̇i =
v̂1 × z

‖v1‖ v̇1 − v̂2 × z

‖v2‖ v̇2

=
v̂1 × z

‖v1‖ δ((D̂c
i − r̂ − ˙̂r)ψi + βiD̂c

iEψi)

− v̂2 × z

‖v2‖ δ((D̂c
i+1 − r̂ − ˙̂r)ψi+1 + βi+1

ˆDc
i+1Eψi+1)

= − 1

‖v1‖βi +
1

‖v2‖βi+1

= δ(−βi + βi+1), i = 1, . . . , n− 1

β̇n = δ(−βn + β1).

which can be written in a compact form as following

β̇ = −δB�β (3.45)



44 Leader-based Adaptive Target Estimation for Multi-agent Systems

where B is the incidence matrix of the directed ring graph from v1 to vn.
First, we note that the system (3.45) is positive (see e.g., [114]), i.e.,
βi(t) ≥ 0 if βi(0) ≥ 0 for all t ≥ 0 and i ∈ I. This proves the posi-
tions of the AUVs are not interchangeable.
Second, noticing that B� is the (in-degree) Laplacian of the directed ring
graph which is strongly connected, then by Theorem 6 in [115], β con-
verges to consensus 2π

n 1.

Note how the AUV Ai will necessarily maintain its relative position pi

throughout the circumnavigation mission. This proves that AUVAi is always in

position pi. We proved both convergences of the angle to the average consensus

for n AUVs and the convergence of these vehicles towards the boundary of the
target up to a given bound. Therefore, we guarantee collision avoidance.

Recall Definition 1 on persistent excitation. This means that for the persis-

tently exciting condition to apply, the AUV must move in a trajectory not con-

fined to a straight line in the 2D space. As referred in [54], the AUV cannot

simply head straight toward the target but must execute a richer class of motion.

Note that the p.e. condition is assumed for Theorem 1. and not proved. How-

ever, in the results section, we will verify if the p.e. assumptions are valid for

our simulations within the simulation time.

3.4 Simulation Results
In this section, we present simulations for the protocol designed in section 3.3.

We use the derived method for estimation of the target (3.23) and (3.32) and

the controlling protocol for the AUVs (3.36). For this section, we discretize

the whole algorithm to be able to use it computationally. The first subsection

considers the persistent excitation condition, and the second subsection analyses

what happens when this condition is not verified.

3.4.1 Simulations with p.e. guarantees
In this subsection, we simulate amoving target with initial position (x[0], y[0]) =
(25, 25), radius r[0] = 10, and dynamic according to

x[t+ 1] = x[t] + α1[t] + 0.5

y[t+ 1] = y[t] + α2[t] + 0.5

r[t+ 1] = r[t] + α3[t]

(3.46)
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Figure 3.4: Time-lapse of four AUVs (blue rectangles) circumnavigating a mov-

ing target (red) with a representation of their paths (green)

However, we simulate that the UAV will provide an initial noisy estimate of

(x̂[0], ŷ[0]) = (25, 25), radius r̂[0] = 20. Note that at time t = 0, the radius
estimate is double the actual radius. Here, αi[t] is a random scalar drawn from
the uniform distribution within the [−0.5, 0.5] interval for i = 1, 2, 3. For this
generated target, we got the following results. The AUVs circumnavigate the

moving target in Fig. 3.4. This gives us a more practical idea of how the AUVs

behave in their target-tracking mission.

Fig. 3.5 shows various plots that analyze the system’s behavior. We compare

the real and estimated targets in the first and second rows. Note that the estimate

of the center ĉ(x̂, ŷ) has an estimation error of up to 2 units. Also, note that the
radius estimate r̂ comprises two instances. First, the initial estimate provided by
the UAVwas very noisy, so we can see the estimate converging rapidly to a more

accurate estimation. We see an estimation error of up to 2 units in the second.

On the third row left column, we can see the distance Db
i of each target to the

boundary of the target - the perfect tracking would result in a distance Db
i of 0
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Figure 3.5: First and second row: real and estimated target’s center c : x, y and
radius r. Third row: tracking error of AUV A1, D

b
1, and angle β1. Fourth row:

control input of AUV A1, u1 : x, y
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Figure 3.6: First row: fṗ1 [t] is bounded by strictly positive bounds. Second row:
fḊc

1
[t] is bounded by strictly positive bounds.

for all AUVs for every time step. Here, we have an error of up to 0.5 units, except

for the beginning, where the error can reach 10 units. This is merely because the

AUVs are initially far from the target.

On the third row, right column, we have the angle between AUVA1 andA2,

β1. Having 4 AUVs, the perfect tracking would result in 2π/4 = π/2 ≈ 1.57
for all AUVs for every time step. We can see this reference as the red line in

the plot, so we see that, for AUV A1, the error is up to 0.2 radians. Finally, on

the fourth row, we have the control input u1 of AUV A1, with parameters x
and y. Recall Remark. 2, where we stated that, for a practical implementation,
there should be a maximum velocity umax. For this case study, we defined that

umax = 1.5, and we plotted this limit in red. Note how the control input stays
within the limit values 1.5 and -1.5.

Since we considered as an assumption that ṗ1[t] and Ḋc
1[t] are p.e., we now

evaluate whether this is the case for this simulation example. According to [116],
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Figure 3.7: Four AUVs (blue rectangles) circumnavigating a moving target (red)

with a representation of their paths (green).

we can adapt Definition 3.2. to the discrete-time case so we obtain the functions

fṗ1 [t] =
t+m∑
k=t

ṗ�
1 [k]ṗ1[k],

fḊc
1
[t] =

t+m∑
k=t

Ḋc
1[k]

2,

(3.47)

which must fulfil ρ2 > fṗ1 [t] > ρ1 and ρ4 > fḊc
1
[t] > ρ3 for positive ρi.

As seen in Fig. 3.6., these conditions are fulfilled for ρ1 = 1.1026, ρ2 =
6.8371, ρ3 = 0.2443, and ρ4 = 8.8497. Then, for these results in this simulation
time, the p.e. conditions hold.

3.4.2 Simulations without p.e. guarantees
In this subsection, we simulate a static target with position (x[0], y[0]) = (25, 25)
and radius r[0] = 10 for all time t. As in the previous subsection, we simu-
late that the UAV provides an estimate of (x̂[0], ŷ[0]) = (25, 25) and radius
r̂[0] = 20. This means that the estimates for the center will not have any initial
error, and the estimate for the radius will have an error of er[0] = r̂[0]− r[0] =
20− 10 = 10.
As seen in Fig. 3.7, the position estimation seems correct, but the radius

estimation appears wrong.
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Figure 3.8: First and second row: real and estimated target’s center c : x, y and
radius r. Third row: tracking error of AUV A1, D

b
1, and angle β1. Fourth row:

control input of AUV A1, u1 : x, y

From the first row, Fig. 3.8, we can see how the estimates for the center

c(x, y) are correct for all the simulation time. However, from the second row,
we can see a steady-state error for the estimation of r. Recall that the estimators
derived in 3.3 for c and r rely on the p.e. conditions for ṗ1 and Ḋc

1, respec-

tively. Then, it seems that the p.e. condition on Ḋc
1 does not hold; therefore, the

estimation of r does not converge to the actual r.
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Figure 3.9: First row: fṗ1 [t] is bounded by strictly positive bounds. Second row:
fḊc

1
[t] is bounded by a strictly positive bound and zero.

From Fig. 3.9, we can conclude that, for this simulation time, even though

the p.e. condition is verified for ṗ1, it is not verified forD
c
1 since for some time

t the minimum bound is not strictly positive.

3.5 Summary
In this chapter, we considered the problem of multi-vehicle target tracking. We

assumed the target was an irregular dynamic shape approximated by a circle

with a moving center and varying radius. We defined the problem mathemati-

cally by introducing relevant variables and equations that relate them. We also

defined the measurements available to each agent and the estimation and cir-

cumnavigation objectives. We created an adaptive estimation and control algo-

rithm and proved their mathematical convergence to a bound according to our

objectives. We presented two simulation results: one to analyze convergence

performance and the other to represent the need for the persistence of excitation

when applying the developed algorithms.



Chapter 4

Decentralized Target Estimation for
Multi-agent Systems

In this chapter, we define a different setup than in Chapter 3 and, therefore, a

different algorithm to solve the multi-vehicle target tracking problem. We try

to decentralize the measurement step by having all vehicles capable of collect-

ing and sharing data to achieve target estimation. As in the previous chapter,

we consider that the target is an irregular dynamic shape approximated by a

circle with a moving center and varying radius. In this chapter, the AUV sys-

tem is composed of n AUVs, all measuring their distance to the boundary of
the target. The AUV system must circumnavigate the boundary of the target

while forming a regular polygon. We also present an extension of the results to

a more general scenario with irregular, non-circular moving shapes. Each vehi-

cle is equipped with a sensor that indicates its distance to the target’s boundary,

including whether it is inside or outside of the target. The first step is the es-

timation of the parameters of the algal bloom curvature in each region of the

shape, that is, its center and radius for every time instance and every vehicle.

The second step is to design a control law for the vehicles to circumnavigate

the shape. We perform a numerical study of the convergence of vehicles to the

target’s boundary.

This chapter is organized as follows. In Section 4.1, we describe the sys-

tem mathematically and formulate the problem to be solved in the following

section. In Section 4.2, we design two algorithms: one for finding the optimal

circle target using the UAV’s measurements and another for the control protocol

to be applied by all AUVs in their navigation. In Section 4.3, the convergence of

both algorithms to the desired state is proved up to a limit bound. A simulated

51
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Figure 4.1: Time-lapse of the algal bloom progression. There is approximately

half a day between each image. Warm colors (yellow, orange, green) indicate a

high density of algal blooms, and cold colors (blues) indicate a low density of

algal blooms.

example using SINMOD data is provided to verify the performance of the algo-

rithms designed follows in Section 4.4. In Section 4.5, we extend the protocol

from the previous chapter to arc estimation. Two sets of simulations illustrating

the performance of the extended algorithm are given in Section 4.6. Concluding

remarks come in Section 4.7.

4.1 Problem Formulation
We consider the problem of tracking a circular shape using a multi-robot system

and a satellite. This shape may be very irregular and unstable over time. We

assume a circle can approximate the shape. An initial image of the algal bloom

confirms such an assumption, as seen in Fig. 4.1, and then we can decide to use

our algorithm to deploy the agents.

We define this circle as

(c, r) ∈ R
3, (4.1)

where c = (x, y) and r are the circle’s center and radius, respectively. After
confirming the algal bloom is close enough to a circle, we can estimate it by
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Figure 4.2: Each AUV estimates the center and radius of the target based on its

distance measurements and shares it with all AUVs. Each AUV i calculates its
control protocol.

our robot’s measurements. This estimate is represented as (ĉ, r̂) ∈ R
3. Note

that using a circle shape does not compromise the generality of the algorithm.

Instead, it guarantees a smooth circumnavigation for any irregular shape close to

a circle. A similar algorithm can be done for shapes approximated by ellipsoids,

but we present a simpler case with circle shapes for notation simplicity.

To solve this tracking problem, we use two types of tools: a satellite and

a system of robots. Depending on the weather, the satellite obtains data from

the target as an image. Then, using image processing, it calculates the possible

initial center and radius of such a circle and shares it with the robots so they can

move toward the target and initiate circumnavigation. Thus, the satellite would

provide initial estimates ĉ(0) = (x̂(0), ŷ(0)) and r̂(0). The robots constantly
measure their distances to the target’s boundary and whether they are inside or

outside the target and share it with the other robots. Each robot has access to its

GPS position and the robot’s position in front of it. This communication scheme

is represented in Fig. 4.2. Values such as βi, pi, and D
b
i will be soon properly

defined.
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The system of robots will jointly circumnavigate the target and provide real-

time information on different fronts. We define we have n agents and, using
the satellite information, they are initialized at positions pi(0), i ∈ [1, . . . , n],
which are outside of the shape and form a counterclockwise directed ring on the

surface. The kinematic of the agents is of the form

ṗi = ui, i ∈ [1, . . . , n], (4.2)

where pi is a vector that contains the position pi = [xi, yi]
� ∈ R

2 and ui ∈ R
2

is the control input.

To avoid the agents concentrating in a region, in which case they may lose

information on other fronts, we would like to distribute the agents equally along

the defined circle. Therefore, we introduce two more parameters. The counter-

clockwise angle between the vector pi − ĉ and pi+1 − ĉ is denoted as βi for
i = 1, . . . , n − 1, and the angle between pn − ĉ and p1 − ĉ is denoted as βn,
i.e.,

βi =∠(pi+1 − ĉ,pi − ĉ), i = 1, . . . , n− 1

βn =∠(p1 − ĉ,pn − ĉ).
(4.3)

Notice that in this case,

βi(0) ≥ 0, and

n∑
i=1

βi(0) = 2π. (4.4)

This is represented in figure Fig. 4.3.

We can define the distance of each agent i to the center as Dc
i = ‖c− pi‖.

Since we do not have access to the center c, the distance to the estimated center
is represented as D̂c

i = ‖ĉ− pi‖. Then, knowing that each robot has access to
its distance to the boundary, we can define it as

Db
i = Dc

i − r. (4.5)

Each agent constantly measures this value, as in Fig. 4.3 and Fig. 4.4. Note that

Db
i is positive if the agent is outside the algal bloom area or negative if it is

inside the algal bloom area. For example, if an agent i is inside the circle about
5 meters, then Db

i = −5, and if this agent is outside the circle about 5 meters,
then Db

i = 5.
Now, we are ready to pose the problem of interest that will be solved in the

following sections.
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ĉ p1

p2

p3

p4

pi+1

pi

β1β2
β3

β4

Figure 4.3: Example scheme of the system with four agents at positions p1, p4,
p3, p2. Note how each has access to the distance to the boundary, represented
by a circumference.

cr

ĉr̂ D̂b
i

D̂c
i+1

pi+1

piβi

Figure 4.4: Scheme of the estimated ĉ, r̂ and the real target c, r as well as the
angle βi between two agents at pi+1 and pi

Problem 2.Design estimators for c(t) and r(t)when both the distance mea-
sures (4.5) and GPS positions are available to each agent. Design the control

input ui for all the agents such that for some positive ε1, ε2,

‖ċ‖ ≤ ε1 (4.6)

|ṙ| ≤ ε2, (4.7)

there exist positiveK1,K2, andK3 satisfying

lim sup
t→∞

‖ĉ(t)− c(t)‖ ≤ K1ε1, (4.8)

lim sup
t→∞

|r̂(t)− r(t)| ≤ K2ε2, (4.9)
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lim sup
t→∞

|Db
i (t)| ≤ K3ε2, (4.10)

lim
t→∞βi(t) =

2π

n
. (4.11)

4.2 Optimal Circle Estimation and Control Algo-
rithms

Here follows our solution for Problem 2. We consider n agents with positions
pi, and we assume all of them are capable of measuring their distancesD

b
i to the

target boundary, includingwhether they’re inside (Db
i is negative) or outside (D

b
i

is positive) of it. Then, they should estimate (c, r) from their shared measure-
ments. For robustness, they update their estimates by taking the average of the

estimated variables by the n agents. Also, if one or more agents suffered faulty
measurements due to bad conditions or failure, the system is ready to support

that situation by using the remaining agent’s estimates. Each agent calculates its

desired velocity, considering its angle βi to the next agent and its distance to the
boundary. The scheme in Fig. 4.5 summarises this algorithm loop.

The first step is the estimation of the circle. Having all the agents constantly

measuringDb
i , we can fit a unique circle as in Fig. 4.3, given that the target shape

is a circle. Mathematically, such a circle can be obtained through triangulation;

therefore, we only need three agents to obtain a unique solution. However, more

than three agents are considered for better coverage of all the fronts and robust-

ness. Note that, in the result section, we used four agents. So, we apply the least

squares method to obtain the approximated circle as in (4.12).

min
ĉ,r̂

n∑
i

(
‖pi − ĉ‖ − (r̂ +Db

i )
)2

. (4.12)

s.t r̂ > 0.

Wewant to obtain the desired control inputui using the previouslymeasured

and estimated variables. The total velocity of each agent comprises two sub-

tasks: approaching the target and circumnavigating it. Therefore, we define the

direction of each agent towards the center of the target as the bearing ψi(t),

ψi =
ĉ− pi

D̂c
i

=
ĉ− pi

‖ĉ− pi‖ . (4.13)
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Satellite provides

image of the field

with ĉ(0) and r̂(0)

Agents take mea-

surements Db
i

Agents estimate ĉ and r̂
using (4.14) and (4.15)

and share estimates

Agents update their

circle estimates and

calculate ψi (4.13)

All agents apply the

control law (4.17)

Figure 4.5: Scheme of the algorithm run on the system

Note that ψi in (4.13) is not well-defined when D̂
c
i = 0, thus we need to

prove that this singularity is avoided for all t ≥ 0 in Theorem 3.1.
To build the control, we need to define ˙̂c and ˙̂r. Even though c(t) and r(t) are

continuous functions, our estimates ˙̂c and ˙̂r are, inevitably, a discrete function.
Therefore, for each time interval ΔT , we approximate ˙̂c(t) and ˙̂r(t) as

˙̂c[t] =
ĉ[t+ΔT ]− ĉ[t]

ΔT
(4.14)

˙̂r[t] =
r̂[t+ΔT ]− r̂[t])

ΔT
(4.15)

The first sub-task is related to the bearing ψi, and the second is related to its

perpendicular,Eψi. Here,E is as defined in 3.34. Therefore, let us first consider
the control law ui where δ is a parameter to be defined.

ui = ˙̂c+ ((D̂c
i − r̂)− 1

δ
˙̂r)ψi + βiD̂c

iEψi (4.16)

The control actuation of an AUV is limited; therefore, we have to make sure
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that the implemented control is within the actuation bounds, and so we introduce

Ui = δui, (4.17)

where δ is the same as before. For a specific ui, it is possible to haveUi within

some specified bounds.

4.3 Convergence Results
Theorem 4.1 Consider the system (4.2) with the control protocol (4.17), and
‖ċ‖ ≤ ε1, |ṙ| ≤ ε2, then there exists K1, K2, and K3 such that circumnaviga-
tion of the moving circle with equally spaced agents can be achieved asymptot-
ically up to a bounded error, i.e.

lim sup
t→∞

‖ĉ(t)− c(t)‖ ≤ K1ε1, (4.18)

lim sup
t→∞

|r̂(t)− r(t)| ≤ K2ε2, (4.19)

lim sup
t→∞

|Db
i (t)| ≤ K3ε2, (4.20)

lim
t→∞βi(t) =

2π

n
. (4.21)

Proof 4.1 The proof is divided into three parts. In the first part, we prove that
the estimated distance D̂c

i converges to the estimated radius r̂, or in other words,
that (4.20) holds. In the second part, we prove that the singularity of the bearing
ψi is avoided. In the last part, we show that the angle between the agents will
converge to the average consensus for n agents, βi = 2π

n , meaning (4.21) holds.

1. We prove that all agents reach the estimate of the boundary of the moving
circles asymptotically, i.e., limt→∞ D̂c

i (t) = r̂(t), so (4.20) holds.

Consider the function Wi(t) := D̂c
i (t) − r̂(t) whose time derivative for

t ∈ [0, τmax) is given as

Ẇi =
(ĉ− pi)

�( ˙̂c− ṗi)

D̂c
i

− ˙̂r

=− (ĉ− pi)
�

D̂c
i

ψiδ(D̂c
i − r̂ − ˙̂r)− (c− pi)

�

D̂c
i

EψiδβiD̂c
i − ˙̂r

=− δ(D̂c
i − r̂ − ˙̂r)− ˙̂r



Convergence Results 59

=− δWi.

Hence for t ∈ [0,+∞), we have D̂c
i (t) = δWi(0)e

−t+r̂(t)which implies
Wi is converging to zero exponentially.

2. Now, we prove that ψi in (4.13) is well-defined, or in other words, that its
singularity is avoided for all time t ≥ 0, D̂c

i 	= 0 ∀t.
Having D̂c

i (t) = δWi(0)e
−t + r̂(t) from the previous proof and knowing

that Wi(0) is always positive and that it converges to zero exponentially,
we have that if r̂(t) > 0 then D̂c

i (t) > 0, ∀t.
So we would have to prove that r̂(t) > 0 ∀t. Given that we use the least
squares method to obtain the estimate of the radius, we can see how one
of the constraints guarantees that r̂(t) > 0 ∀t. Then we conclude that
D̂c

i 	= 0 ∀t and that the bearing ψi(t) is well defined ∀t.
3. Finally, we show that the angle between the agents will converge to the

average consensus for n agents, βi = 2π
n , so (4.21) holds.

Firstly, note that we can write an angle between two vectorsβi = ∠(v2, v1)
as

βi = 2atan2((v1 × v2) · z, ‖v1‖‖v2‖+ v1 · v2) (4.22)

and its derivative as

β̇i =
v̂1 × z

‖v1‖ v̇1 − v̂2 × z

‖v2‖ v̇2 (4.23)

where z = v1×v2
‖v1×v2‖ , v̂i =

vi
‖vi‖ , i = 1, 2.

Then, for v1 = pi − ĉ and v2 = pi+1 − ĉ we get

β̇i =
v̂1 × z

‖v1‖ v̇1 − v̂2 × z

‖v2‖ v̇2

=
v̂1 × z

‖v1‖ δ((D̂c
i − r̂ − ˙̂r)ψi + βiD̂c

iEψi)

− v̂2 × z

‖v2‖ δ((D̂c
i+1 − r̂ − ˙̂r)ψi+1 + βi+1

ˆDc
i+1Eψi+1)

= − 1

‖v1‖βi +
1

‖v2‖βi+1

= δ(−βi + βi+1), i = 1, . . . , n− 1

β̇n = δ(−βn + β1).
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which can be written in a compact form as following

β̇ = −δB�β (4.24)

where B is the incidence matrix of the directed ring graph from v1 to vn.
First, we note that the system (4.24) is positive (see e.g., [114]), i.e.,
βi(t) ≥ 0 if βi(0) ≥ 0 for all t ≥ 0 and i ∈ I. This proves the po-
sitions of the agents are not interchangeable. Second, noticing that B�

is the (in-degree) Laplacian of the directed ring graph which is strongly
connected, then by Theorem 6 in [115], β converges to consensus 2π

n 1.

Remark 4.1 Note how the agentAi will maintain its relative position pi through-
out the circumnavigation mission. We can prove that agent Ai is always in po-
sition pi.

Remark 4.2 We proved both convergence of the angle to the average consensus
for n agents and convergence of these agents towards the boundary of the target
up to a given bound. Therefore, we guarantee collision avoidance.

4.4 Simulation Results
In this section, we present simulations for the protocol designed in section 4.2.

We use the derived method to estimate the target (4.12) and the controlling pro-

tocol for the agents (4.17). For this section, we discretize the whole algorithm

to be able to use it computationally.

We use the target in the images provided by SINMOD simulations [117].

The present simulation corresponds to approximately four days of data, and the

target we obtained is approximately 1-3km in radius.

In Fig. 4.6, we can see the robot system circumnavigating the algal bloom

target in a time-lapse. This specific algal bloom target is challenging as it shape-

shifts quite abruptly. Note that the agents were deployed in positions in the

boundary, so their initial error Db
i (0) is zero. Note also how, in some instances

of the mission, the target moves fast to such an extent that results in a delayed

motion for the robots. This effect is foreseen and explained in Theorem 4.1.

Analyzing the simulations, we observe each variable in Fig. 4.7. Firstly, we

can see the comparison between the real position of the target and the estimates

our algorithm provided. We can observe that the estimation closely follows the

real value with a very small error. Secondly, we analyze the distance of agent 1 to
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Figure 4.6: Time-lapse of four agents circumnavigating a moving target (red)

with a representation of their paths (white). Each plot is approximately half a

day after the previous one.
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Figure 4.7: First and second row: real and estimated target’s center c : x, y and
radius r. Third row: tracking error of agent 1, Db

1 and angle β1. Fourth row:
control input of agent 1, u1 : x, y

the boundaryDb
1 and the angle between agent 1 and 2, β1. We can see the error is

within the expected boundaries according to Theorem 1. Regarding the distance

to the boundary, the error never exceeds 2 units (200 meters) and is usually up

to 1 unit (100 meters). Note that each x and y coordinate unit corresponds to

about 100 meters. Also, each time iteration unit corresponds to 6min. As for

the angle between agents, the maximum error is 0.2 radians, corresponding to
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Figure 4.8: Time-lapse of five AUVs (blue rectangles) circumnavigating a mov-

ing target (red) with a representation of their paths (white)

a maximum angle error of 11 degrees. If we look at the plots for the control

input of our agents, namely, for agent 1, we can see how the control was applied

up to a maximum value. We defined the maximum speed of the agent for each

coordinate to be 2 y units per 1 x unit, corresponding to 2km/h in each Cartesian

direction (200m / 6min = 2km/h).

Having the same protocols and data set, we simulated a different scenario

where a fifth vehicle enters the system, as seen in Fig. 4.8. We can see how the

vehicles adjust the angles between each other to make space for the new vehicle.

Notice how, in the last figure, the vehicles seem to converge to a regular polygon

formation. This scenario represents the scaling possibility of our protocol.

4.5 Extension for Non-circular Shapes
In this section, we extend the results from Section 4.2 to amore general scenario.

We consider circumnavigating irregular, non-circular moving shapes. Our goal
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Figure 4.9: Example of an irregular shape with seven vehicles circumnavigating

it.

is to circumnavigate an irregular algal bloom target using a group of vehicles.

Each vehicle is equipped with a sensor that indicates its distance to the target’s

boundary, including whether it is inside or outside of the target. The first step is

the estimation of the parameters of the algal bloom curvature in each region of

the shape, that is, its center and radius for every time instance and every vehicle.

The second step is to design a control law for the vehicles to circumnavigate

the shape. We perform a numerical study of the convergence of vehicles to the

target’s boundary. This section considers the problem of tracking an irregular,

moving, and time-varying shape using a multi-vehicle system and a satellite.

We see an example of such an irregular shape in Fig. 4.9.

An initial image of the algal bloom will begin the mission. The vehicles

measure their distance to the target’s boundary and whether they are inside or

outside the target. Each vehicle shares this information with its two neighboring

vehicles. We assume that all vehicles have a common sense of direction con-

cerning the target, and we assume that every vehicle has one vehicle on the left

and one on the right. Each vehicle has access to its GPS positions, its distance

to the boundary of the target, and its two neighbors’ distances to the target.

The system of vehicles will circumnavigate the target and provide real-time

information on its boundary.We definen vehicles at positionspi(0), i ∈ [1, . . . , n].
They start outside the target and form a counterclockwise, undirected ring on
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Figure 4.10: Control architecture for vehicle i communicating with its two
neighbours i− 1 and i+ 1.

the surface. The kinematics of the vehicles is the same as in previous chap-

ters: ṗi = ui, i ∈ [1, . . . , n] where pi is a vector that contains the position

pi = [xi, yi]
� ∈ R

2 and ui ∈ R
2 is the control input.

Each vehicle should define a local curvature through a circle as in Fig.4.9.

We define this circle as

(ci, ri) ∈ R
3, (4.25)

where ci = (xi, yi) and ri are the circle’s center and radius corresponding to
vehicle i.
The distance of each vehicle to the boundary of the target is defined as the

smallest measured distance to the boundary,Di. It is measured by each vehicle.

Note that Di is positive if the vehicle is outside the target and negative if it is

inside. We want to space the vehicles equally along the shape. We can do this by

making the distances between vehicles approximately equal. For each vehicle i,
its distance to the neighbour in the right Di,i+1 and to the neighbour in the left

Di,i−1:

Di,i+1 =‖pi − pi+1‖, i = 1, . . . , n− 1

Di,i−1 =‖pi − pi−1‖, i = 2, . . . , n.

Dn,1 = D1,n =‖pn − p1‖.
(4.26)

4.5.1 Control strategy and arc estimation
The control architecture is summarised in Fig. 4.10. We consider n vehicles at
positions pi, and we assume all of them are capable of measuring their distances
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Satellite provides an image

of the field with the ap-

proximate region of interest

Each vehicle measures Di

Each vehicle estimates

ci and ri using (4.27)

Each vehicle calcu-

lates its ψi (4.28)

All vehicles apply

the control law (4.29)

Figure 4.11: Algorithm for positioning the vehicles on the target boundary

Di to the target boundary, including whether they are inside (Di is negative)

or outside (Di is positive) of it. Then, each vehicle estimates (ci, ri) from its
two neighbors’ shared measurements and positions. Each vehicle calculates its

desired velocity considering its distanceDi+1 andDi−1 to its neighbors and its

distance to the boundary. The scheme in Fig. 4.11 summarises the algorithm.

The first step is the definition of the local circle for each vehicle. Having

all the vehicles constantly measuringDi, we fit some shape as in the left image

of Fig. 4.12. But, since the target shape is not regular like a circle, we define

curvatures for every time instance that each vehicle should follow. The curva-

ture for each vehicle is defined in a distributed fashion using the information of

its own and its two neighbors by creating a circle (ci, ri). For example, in the
middle image of Fig. 4.12 we can see that vehicle 2 defines a circle using the

information of vehicles 1, 2, and 3 while vehicle 3 defines a circle as in the right

image of Fig. 4.12 using the information of vehicles 2, 3, and 4. Each vehicle

estimates its circle from

min
ci,ri

i+1∑
k=i−1

(‖pk − ci‖ − (ri +Dk))
2 , i = 1, . . . , n. (4.27)

s.t r > 0.
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Figure 4.12: Left: 7 vehicles circumnavigate an algal bloom shape (represented

by the red oval shape) while measuring their distances to its boundary (dashed

black circles). Middle: vehicle 2 communicates with vehicles 1 and 3 to define

its ideal curvature (red dashed line) for time instance t. Right: vehicle 3 com-
municates with vehicles 2 and 4 to define its ideal curvature (red dashed line)

for time instance t.

Using the measured and estimated variables, we want to obtain the desired

control input ui. The total velocity of each vehicle comprises two parts: ap-

proaching the target and circumnavigating it. Therefore, we define the direction

of each vehicle towards the center of the target as the bearing,

ψi =
ci − pi

‖ci − pi‖ . (4.28)

The control law for each vehicle i is

ui = Diψi +
Di,i+1

Di,i−1
Eψi (4.29)

4.6 Simulation Results
This section presents simulations for the protocol designed in Section 4.5.1. In

the first subsection, we apply our protocol to a slowly drifting and shape-shifting

ellipsoid, and in the second subsection, we apply it to a static yet irregular shape

that looks like a three-leafed clover.
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Figure 4.13: Representation of the angle α between the normal vector to the
circle (blue) and the normal vector to the target (red) at the vehicle’s location

(black square and dot).

We define the angleα between the normal vector to the circle and the normal
vector to the target at the vehicle’s location as in Fig. 4.13. Note that, as seen in

this figure, a perfect estimate corresponds to α = 0.

4.6.1 Oval shape with five vehicles
We first simulate a moving target with initial position (x[0], y[0]) = (50, 40),
horizontal radius rh[0] = 25, vertical radius rv[0] = 15. The shape evolves with
the following dynamics

x[t+ 1] = x[t] + γ1[t] + 0.2

y[t+ 1] = y[t] + γ2[t] + 0.2

rh[t+ 1] = rh[t] + γ3[t] + 0.2

rv[t+ 1] = rv[t] + γ4[t] + 0.2.

(4.30)

We assume that each vehicle has access to a common initial noisy estimate

of (x̂[0], ŷ[0]) = (50, 40), radius r̂[0] = 25. Note that at time t = 0, the radius
estimate equals the ellipsoid’s largest radius. Here, γi[t] is a random scalar drawn
from the uniform distribution within the interval [−0.5, 0.5] for i = 1, . . . , 4.
Fig. 4.14 shows the multi-vehicle system converges towards the moving tar-

get. The red ellipsoid is the target shape, the blue squares are the vehicles, and

the green lines are the path each vehicle took. Fig. 4.15 illustrates how the AUVs

estimate and track the target. Here the yellow circle is the circle estimate of one

of the vehicles. As shown, the estimated circle of vehicle i partially coincides
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Figure 4.14: Time-lapse of five AUVs (blue rectangles) converging and start-

ing to circumnavigate a moving target (red) with a representation of their paths

(green).

with the target in the neighboring region of vehicle i. We can see that the trajec-
tories closely match the target shape.

Fig. 4.16 shows a detailed analysis of this case study. The top two figures

compare the ellipse target to the estimated circle for vehicle 1. This comparison
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Figure 4.15: Time-lapse of five AUVs (blue rectangles) circumnavigating a

moving target (red) with the estimated circle of one of them (yellow) and a rep-

resentation of their paths (green)

comprises the center with x and y parameters. We can see that the center is, on
average, close to the ellipsoid’s center. The second row shows the time evolution

of cos(α), the angle between the normal vectors to the surface of both the ellipse
and the circle. Note that the normal vector to the surface of the circle ψ1 is used

by each vehicle. If the estimation protocol is perfect, it should be equal to the

normal vector to the target. This corresponds to α = 0. The figure shows that
the estimated normal vector is close to the target’s normal vector.

The left plot in the third row shows the distance of vehicle 1 to the boundary

of the target, D1. The vehicle starts far from the target and quickly converges

toward its boundary. As the target moves and changes size and shape, the ve-

hicle will constantly adjust its trajectory toward the boundary. This creates the

observed ripple in the plot.

The third row right plot shows the ratio of two distances: the distance of

vehicle 1 to the neighboring vehicles n and 2. As expected, this ratio is close
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Figure 4.16: First row: target and estimated circle’s center c : x, y. Second
row: Cosine of the angle between the normals to the target and circle cos(α).
Third row: tracking error of AUV A1,D1 and ratio between vehicle’s distances

D1,2/D1,n. Fourth row: control input of AUV A1, u1 : x, y

to one. On the last row, we have the control input for vehicle 1. Note that the
oscillation corresponds to a turn around the target.



72 Decentralized Target Estimation for Multi-agent Systems

4.6.2 Irregular shape with seven vehicles
We first simulate a static target shape with static position (x, y) = (50, 40) and
radius r(θ) = 5 sin(0.06πθ) + 20. We assume that each vehicle has access to
a common initial noisy estimate of (x̂[0], ŷ[0]) = (50, 40), radius r̂[0] = 20.
Note that at time t = 0, the radius estimate equals the shape’s average radius.
We use seven vehicles to track this target.

Fig. 4.17 presents the convergence towards the target. Fig. 4.18 shows, sim-

ilarly to Fig. 4.15, how a local circle is used to compute the control. The plots

indicate that the protocols perform well and that there are some oscillations due

to the target shape. A more detailed analysis is given in Fig. 4.19. The top two

plots show that the center is, on average, close to the target’s center and oscil-

lating around it.

4.7 Summary
In this chapter, we considered the problem of multi-vehicle target tracking for

circular and non-circular shapes. The target was assumed to be an irregular dy-

namic shape approximated by a circle with a moving center and varying ra-

dius. The difference from the previous chapter is the setup and the protocols

designed. We proposed a decentralized estimation protocol in which all agents

measure their distance to the boundary and, by sharing this information, de-

termine the optimal circumnavigation circle. This problem was mathematically

defined by introducing relevant variables and equations that relate them. We

also defined the measurements available to each agent and the new estimation

and circumnavigation objectives. An optimal algorithm was proposed for es-

timating the target and a control algorithm, and we proved their mathematical

convergence up to a bound according to our objectives. Two simulation results

were presented: one to analyze convergence performance and the other to rep-

resent the possibility of scaleability regarding introducing new vehicles of the

system while applying the developed algorithms.

The proposed algorithm was extended to a more generic scenario for irregu-

lar dynamic shapes, maintaining the decentralized estimation protocol in which

all vehicles measured their distance to the boundary. It was assumed that the

vehicles share this information with their two neighbors, and each vehicle deter-

mines a circle that best approximates the curvature at the vehicle’s area. We pre-

sented two numerical simulation results using a dynamic oval and non-circular
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Figure 4.17: Time-lapse of five AUVs (blue rectangles) converging and start-

ing to circumnavigate a moving target (red) with a representation of their paths

(green).

static shape. Our algorithm succeeded for both simulations as we observed con-

vergence with bounded and small tracking errors. The second simulation had

bigger tracking errors than the first. This outcome is expected since the protocol

relies on neighbor information for estimation, so the more irregular a shape is,
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Figure 4.18: Time-lapse of seven AUVs (blue rectangles) circumnavigating a

static target (red) with a representation of their trajectories (green) and the esti-

mated circle of one of them (yellow).

the more vehicles are needed to estimate it accurately.
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Figure 4.19: First row: target and estimated circle’s center c : x, y. Second row:
Cosine of the angle between the normals to the target and circle cos(α). Third
row: AUV A1’s distance to the boundary D1 and ratio of distances between

neighbours
D1,2

D1,n
. Fourth row: control input of AUV A1, u1 : x, y.





Chapter 5

Linear Front Approximation for
Single-agent Systems

This chapter considers the problem of tracking and mapping a river front with

an AUV. The problem formulation is targeted at the scientific study of the pro-

cesses by which the river and the ocean interact. The approach extends previ-

ous work in AUV front tracking to simultaneous tracking and mapping under

different ocean and meteorological conditions. This is done with the help of

parameterizable motion control algorithms to enable adaptation to these time-

varying conditions. The approach is evaluated in simulation with the help of a

high-resolution hydrodynamic model. The test plan covers over 300 test cases

with the most representative combinations of the ocean and meteorological con-

ditions.

This chapter is organized as follows. 5.1 describes the problem formulation.

Section 5.2 is about the tracking and mapping approach, emphasizing the pro-

posed algorithms and parameterizations of the ocean and meteorological con-

ditions and how these conditions affect performance. It also involves deploying

the tracking and mapping algorithms onboard an AUV for field testing. In Sec-

tion 5.3, we present the test plan and discuss the results of the simulation tests.

Concluding remarks come in Section 5.4.

5.1 Problem Formulation
In this chapter, we are interested in the processes by which fresh water (lower

salinity) from the Douro River (Porto, Portugal) rich in nutrients, sediments, and

77
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Figure 5.1: Diagram depicting a river front (adapted from [118], Fig. 1).

pollutants interact with denser ocean water with higher salinity (Figure 5.1). For

this reason, it is important to study and map the dynamics of the front, which

will help predict its influence on the coastal areas surrounding the river mouth.

The front is quite dynamic, mainly because of winds and tidal forcing, and the

front moves back and forth because of the tides. The Douro River front is just

a thin layer of fresh water (typical thickness is around 2 meters) moving over

ocean waters.

5.1.1 Problem Statement
Wewant to map the Douro River front, specifically in the salinity and associated

temperature maps. Thus, we need a few definitions.

The river front is defined as a scalar field evolving with time:

Front : D ⊂ R
4 → R

2 (5.1)

where D is a closed set. Front has two variables of interest, salinity, S, and
temperature, T :

Front(x, y, z, t) = [T (x, y, z, t), S(x, y, z, t)] (5.2)

No assumptions on the mathematical model that describes these variables are

made. The evolution ofFront is determined by a set of parametersParametersFront =
{ρ1, . . . , ρn}. They describe wind, tide, salinity profile of the front, and velocity
of the front, which directly influence the shape and position of the front. Some

parameters are unknown, others are known a priori, and others are calculated

during the mission. We do not have direct access to the function front, only to
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Figure 5.2: Representation of the δ-band defined by the salinity values Slow and

Shigh.

point-wise measurements taken by an AUV along a trajectory Traj : [t0, tf ] →
R
3. The position, p of the AUV at time t, is p(t) = [x(t), y(t), z(t)]. The evo-
lution of p is governed by the equation of motion:

ṗ(t) = f(p(t), u(t), v(t), t), u(t) ∈ U, v(t) ∈ V (5.3)

where u(t) and v(t) are, respectively, the AUV control inputs and the velocity
of the currents; U and V are compact sets.
The measurements of salinity and temperature taken by the AUV at time t

are, respectively, Ŝ(p(t), t) and T̂ (p(t), t). The streams of salinity and temper-
ature measurements, taken by the AUV up to time t are respectively

StreamS(t) : [t0, tf ] → C, StreamS(t) = Ŝ(Traj(t), t) (5.4)

StreamT(t) : [t0, tf ] → C, StreamT (t) = T̂ (Traj(t), t) (5.5)

where C is the space of continuous functions [R → R].
The problem addressed in this chapter is:

Problem 5.1 Given an initial AUV position p(t0) and a set of parameters de-
fined as ParametersFront:

i) Track a δ−band centered on the s isoline of the front located at depth
zd = 0, Iso(s,zd=0) = { (x, y, z, t) : S(x, y, zd, t) = s}.

ii) Map the front in this δ−band defined by two salinity threshold values,
[Slow, Shigh] as in Fig. 5.2.
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(a) Zigzag. (b) Alt. Zigzag. (c) Lawn Mower.

Figure 5.3: Schematic of the algorithms for tracking and mapping the Douro

River front.

iii) Ensure that the direction of travel of the AUV when crossing the front
is perpendicular to Iso(s,zd) for half of the total crossings.

iv) Map the isosurface where S(x, y, z, t) = s in the δ-band.

The requirement for perpendicular crossings of the front is because non-

perpendicular crossings can lead to significant distortions in calculating the

front characteristics, such as spreading width, length of the hydrodynamic mix-

ing zone, and minimum dilution.

5.2 Front Detection Algorithm
The approach for tracking and mapping the Douro River front is based on three

motion adaptation algorithms and a front estimation procedure. The algorithms

are tuned with a few parameters to enable user-selected adaptation to ocean and

meteorological conditions.

5.2.1 Algorithms
We propose three algorithms to track and map the Douro river front (Figure

5.3). These algorithms are characterized by the shape of the resulting paths.

The paths depicted in this figure are horizontal projections of 3D yoyo paths to

be performed by the vehicle.

The Zigzag is characterized by two straight line paths that make an angle α
when the paths cross inside the front. In addition, this algorithm also guarantees,
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up to some error, that the front is crossed in a direction perpendicular to it when

the vehicle enters the front.

TheAlternative Zigzag adds a straight line segment of lengthDout parallel to

the front for excursions outside the front. This trajectory results in a faster front

progression since it increases the space between front crossing points compared

to the Zigzag trajectory.
The ideal crossing of the front should be perpendicular to the front, as this is

the situation that yields the ideal conditions for sampling the salinity profile of

the front. For this reason, a path that always traverses the front with perpendic-

ular crossings would be ideal. This is achieved by performing a parallel transect

to the front of length Din when moving inside the front. This path is referred

to as Lawn Mower. Change of directions are triggered when the salinity thresh-
olds [Shigh, Slow] are met and a minimal distanceDmin or a maximum distance

Dmax from the front are reached.

5.2.2 Front estimation and detection
Initially, the vehicle does not have any information on the shape and parameters

of the front. This poses two different problems. Firstly, an initial trajectory must

be capable of crossing the front without any previous information on its shape.

Secondly, the shape of the front must be predicted to determine the perpendic-

ular segments to it.

The problem of finding the front is addressed by having the vehicle per-

form a classical zigzag trajectory with an angle α between all trajectory seg-
ments. The first three front crossings enable the estimation of some essential

front parameters. After these three crossing points, the trajectory adaptation al-

gorithms are initiated. For the front’s prediction, the last and third last front

crossing points, Pcrossn and Pcrossn−2 ∈ R
2, are used to perform a linear predic-

tion. The vector, �f = [f1, f2]
T , is formed by the two points and represents the

estimation of the front’s direction, γ. Thus,

�f =�Pcrossn − �Pcrossn−2 ,

γ =∠�f = atan2(f2, f1).
(5.6)

The direction γ is used to compute the perpendicular segments. The error be-
tween the true perpendicular direction and the predicted is ε. Figure 5.4 shows
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Figure 5.4: Schematic representation of the typical zigzag trajectory and the first

front estimation γ after three crossings of the front.

a schematic example of the first zigzag trajectory and the process of predicting

the direction of the front after detecting three crossing points.

The front is a thin layer of fresh water located at the surface. Hence, the

first crossing of the front is done at the surface and will determine the front’s

reference salinity value s. This reference salinity value is calculated for every
new mission.

Since the front is characterized by a steep change of the salinity field, the

first survey at the surface is used to find the maximum derivative of the sam-

pled values and the associated instant tmax where that maximum rate of change

occurs. Let s be the value of salinity at instant tmax (5.7). This estimates the

maximum gradient of the salinity field in that region.

tmax = {t : argmax
(∂Ŝ(x, y, 0, t)

∂t

)
}

s = Ŝ(x, y, z, tmax)

(5.7)

5.2.3 3D mapping
The mapping of the front has to be done in 3 dimensions. This is accomplished

by having the vehicle perform a yoyo trajectory, defined by the pitch angle

θ = 15◦ between the path and the horizontal plane and cycling between the
surface and some maximum depth zmax. The nominal value for zmax is chosen

to be 10m because the thickness of the front is in the order of 2m in nominal con-

ditions. The front crossing logic is enabled only when the depth of the vehicle
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Figure 5.5: Vertical profile of the AUV yoyo trajectory (black dashed line) while

crossing the front. The estimated crossing point is the middle point between the

surface locations.

exceeds 25 centimeters (z > 0.25 m).
Figure 5.5 shows a typical situation where the vehicle crosses the front when

starting inside the front. A front crossing, Pcross, is declared as the middle point

between the two last surface locations, Psurface ∈ R
2 (5.8).

Pcrossn =
Psurfacei + Psurfacei−1

2
(5.8)

5.2.4 Environmental and algorithm parameters
In this subsection, we discuss the parameters affecting the performance of the

algorithms. We consider three environmental parameters: tide, wind, and river

outflow. Tides determine the time window the mission should occur, which is

about 6 hours during the ebb phase. In what follows, we consider that missions

take place during this phase.

Wind plays an important role in determining the shape of the front. There

are three main shape fronts caused by southerly, northerly, and east or light wind

conditions, as seen in Fig. 5.6. This knowledge is used to select the initial po-

sition of the AUV for any sampling mission. The initial direction of the vehicle

is parallel to the coast. If there is a northerly wind, the vehicle starts in a north-

ward direction. Conversely, if a southerly wind is identified, we start the vehicle

in a southward direction. The initial location is always fairly close to the river
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(a) 9th May 2016 - S front. (b) 15th May 2016 - N front. (c) 2nd May 2017 - LW front.

Figure 5.6: Typical front patterns for Southerly-S (a), Northerly-N (b), and East

and/or light wind-LW (c) conditions.

Algorithm Parameters
Zigzag α

Alt. Zigzag Dout α

Lawn Mower Dout Din

Table 5.1: Trajectory parameters.

Parameter Value
zmax 10 m

θ 15 ◦

[Shigh, Slow] [33, 23]

[Dmin, Dmax] [500, 750]m

Table 5.2: Parameters used for mapping

the Douro river front.

mouth to guarantee the vehicle is inside the front. The levels of the river outflow

are a major consideration when it comes to field deployments of the vehicle. It

may happen that the front is not well-defined for some regimes. This typically

happens when the river discharge is too small or too large.

Next, we discuss the trajectory and mapping parameters used to tune the

algorithms. These will directly influence the behavior and performance of the

system. The user defines the settings of these parameters before deploying the

AUV. The results presented in section 5.3 provide insights into optimal param-

eter selection. The trajectory parameters are presented in Table 5.1. The map-

ping parameters are presented next. These determine the mapping behavior of

the vehicle. These are the maximum vertical distance (zmax); the yoyo/pitch an-

gle (θ); front thresholds (Shigh, Slow); and the minimum and maximum distance

covered by the vehicle after crossing the front (Dmin, Dmax). Table 5.2 presents

the parameters used for the case of the Douro river front.
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Figure 5.7: LSTS toolchain: components and interactions.

Figure 5.8: Control interactions – IMC messages exchanged with other DUNE

tasks.

5.2.5 Implementation
The algorithms presented in this section were deployed on a Light Autonomous

Underwater Vehicle (LAUV)with the help of the open-source software toolchain

developed by LSTS [119]. The toolchain includes DUNE and Neptus, which

communicate with the IMC message protocol [120], as depicted in Figure 5.7.

Neptus is a graphical user interface supporting planning and execution con-

trol [121]. The LAUV communicates with Neptus via acoustic modems (un-

derwater) or Wi-Fi (at the surface). DUNE is the LAUV onboard software han-

dling navigation, control, communications, logging, and vehicle hardware inter-

actions. DUNE provides tasks able to interact with all sensors and actuators of

the LAUV, as well as the software infrastructure to deploy additional control and

navigation tasks. A new control task was developed to deploy the front-tracking

algorithms and the front-estimation calculations. This task communicates with

other tasks using four IMC messages, as described in Figure 5.8.

The low-level control of the vehicle is done with the help of two other con-

trol tasks, also called maneuver controllers: YoYo and GoTo. The new control
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Front

Set Static Dynamic 2D 3D Ocean
Currents

# of
tests

A � � 9

B.1 � � 9

B.2 � � 16

C.1 � � 9

C.2 � � 30

D � � � � 216

E � � � 18

307

Table 5.3: Test plan.

task sends one message to each maneuver controller. The GoTo maneuver will

control the vehicle to move to a given waypoint, and YoYo maneuver is about

implementing a yoyo trajectory. The new control task consumes messages en-

coding the estimated state and salinity measurements periodically broadcast by

the two other tasks depicted in Figure 5.8. DUNE has a simulation mode to fa-

cilitate the integration and validation of new onboard software with the help of

models of the sensors and actuators. This is why the two tasks sending messages

to the new control task can get data from simulationmodels and/or recorded files

or from the hardware in field deployments. This mode validated the algorithms

developed in this work before field deployments.

5.3 Simulation Results
We developed a simulation environment in MATLAB to test and validate the

proposed approach. We used the DELFT3D ocean model [122] to generate

salinity and water flow data in these simulations.

5.3.1 Test plan
The algorithms were tested in three main front shapes determined by differ-

ent wind conditions: Southerly, Northerly, and Light Wind. Typically, Southerly

winds result in faster propagation velocities for the front.
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Table 5.3 describes 307 test cases grouped into seven different test sets, A
to D, covering different front conditions and parameters. Front conditions in-
cluded: i) static or dynamic fronts, ii) 2D or 3D tracking, and iii) the presence

of ocean currents. Static fronts do not represent a realistic test case. Neverthe-

less, these tests proved useful in studying the properties of the three algorithms.

Test sets A and B.1 included nine tests, each analyzing the three algorithms
for the three different front patterns. B.2 analyzes the effect of the AUV veloc-
ity v (ranging between 0.5 to 5 m/s). C.2 considers the effect of the length
of the yoyo cycle (distances between consecutive samples at the surface) rang-

ing from 3.7m to 458.1m. D tests different values of the trajectory parameters
(α ∈ [20, 70]◦, Dout ∈ [100, 800]m and Din ∈ [100, 800]m). Figure 5.9
shows simulation runs for test set C.1 with a S front. As we can see, the AUV
successfully tracks the front with the three algorithms. Also, note that this is the

fastest propagating front and that the algorithms can still track the front.

Next, we present the performance metrics used in these simulations before

briefly discussing the results for the seven test sets.

Performance metrics

We consider three performance metrics:

1) The quality of each mission is measured by the average error of the front

prediction εavg presented below, where i refers to the error in each transect. We
also label each transect as optimal if |εi| < 20◦.

εavg =
1

n

n∑
i=1

|εi|, (5.9)

2) The speed of progression along the front vfp (m/s) is given by the length of
the front mapped so far (calculated from successive front crossings) divided by

the duration of the mission tM :

vfp =
1

tM

n∑
i=2

||�Pcrossi − �Pcrossi−1 ||. (5.10)

3) The percentage of optimal (perpendicular) crossings for a given mission.
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Figure 5.9: Results from set C.1 6-hour mission from 4:30 to 10:30 on the S
front. Algorithms: (a) Zigzag, (b) Alt. Zigzag, (c) Lawn Mower. The vehicle
(black) moves in the surface along the front (red).

5.3.2 Test sets A, B.1 and C.1: Performance of the algorithms
Test sets A, B.1, and C.1 targeted a comparative study of the algorithms under
the same front patterns and tuning parameters. The performance ranking of the

algorithms under these conditions is briefly summarised in Table 5.4.

5.3.3 Test set B.2: Effects of the AUV velocity
Test set B.2 aimed at studying how vehicle velocity impacts tracking perfor-
mance. This was done for the fast S and slow N propagating fronts. The results
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Zigzag Alt. Zigzag Lawn Mower
Estimated average error 1 2 1

# of optimal crossings 2 3 1

Front progression 2 1 2

Table 5.4: Rankings of the algorithms: worst (3) to best (1).

Figure 5.10: Average error, εavg, for different vehicle velocities, v.

are shown in Figure 5.10.

Observe that some AUV velocities used in these tests are not feasible. How-

ever, these results provide insights into the role of the vehicle’s speed in the

tracking mission. Starting with the fast front (S front) represented in blue, we
observe that the increase in velocity produces a better front prediction that con-

verges to the performance on the static front (dashed line). As expected, the

increase in the AUV velocity correlates to an increase in performance for fast-

moving fronts; this effect is almost negligible for slow-moving fronts.

5.3.4 Test set C.2: Effects of the length of yoyo trajectory
cycle

Test set C.2 aims to study the effects of the length of the yoyo cycle on per-
formance. The vehicle samples the front’s surface one time per yoyo cycle. For

example, the distance between consecutive samples at the surface is dsurface =
74.6 m for a pitch angle of θ = 15◦ and with zmax = 10 m. As expected, a
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Figure 5.11: Effect of the distance between surface points dsurface on the aver-
age error εavg for a Zigzag trajectory.

general upward tendency in εavg is verified with the increase of dsurface (Fig-
ure 5.11). However, it is important to note that this trend is not noticeable when

dsurface < 100m. This provides good evidence that in this range, the 3D map-
ping of the front does not heavily influence the tracking performance. Onewould

expect the vehicle to be unable to track the front for larger values of dsurface
(e.g., 400m). Surprisingly, this was not the case for tests with a static front.

5.3.5 Test set D: Effects of different trajectory parameters
Test set D evaluated the effects of variations of the α trajectory parameter for
static 2D and dynamic 3D fronts.

In the static 2D tests, larger α angles (and larger Din and Dout distances)

result in larger distances between crossing points, thus reducing tracking per-

formance (measured by average error variation on α) as shown in Figure 5.12a
for the Zigzag algorithm. Similar qualitative results were obtained for the other
parameters and strategies.

In the dynamic 3D tests, the close-to-linear relations obtained for the static

2D tests are no longer valid. The best performance is not achieved when α =
20◦ but when α ∈ [30, 50]◦ (Figure 5.12b). Thus, the best performance is not
guaranteed when the front crossing points are at a minimal distance from each

other. The locations of Pcross are not as accurate as before, and the prediction
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(a) Static 2D front. (b) Dynamic 3D front.

Figure 5.12: Effect of the trajectory angle, α, on the average error, εavg for a
Zigzag strategy.

Figure 5.13: Effect of the trajectory angle α on the speed of progression vfp.

with closer points does not always result in a more accurate description of the

front’s orientation.

The effects on the speed of progression vfp are as expected for all test
cases. The speed of progression increases with larger distances between cross-

ing points, which, in turn, increases with α (Figure 5.13).
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Zigzag Alt. Zigzag Lawn Mower
front OC PC Δ OC PC Δ OC PC Δ

N 60 69 9 101 70 -31 8 -7 -15
S 37 28 -9 40 35 -5 -3 -9 -6

LW 37 -5 -42 3 -39 -42 -12 -36 -24

Table 5.5: Variation of the average estimation error, εavg, compared to the test
where ocean currents are zero. The values are in percentage. OC - Only ocean
currents are taken into account; PC - Path correction method active;Δ - Differ-
ence between the two results.

Test set E: effects of ocean currents

The motions of the AUV are affected by ocean currents (see Equation 5.3).

Moreover, the AUV used in this work does not have sensors to measure the

velocity with respect to the seabed. This affects the trajectory tracking perfor-

mance. To minimize this effect, we used the path correction method (provided

by DUNE) when the AUV reaches the surface: i) the position of the AUV is re-

set with the GPS coordinates when the AUV breaches the surface; ii) the AUV

is commanded to move to the real surfacing position before diving again.

Test set E includes runs without and with the path correction method. Re-
sults are compared to the ones from test set C.1. Table 5.5 shows the effect of the
ocean currents on the estimated average error. As expected, ocean currents have

an impact on the tracking performance. Overall, the path correction method mit-

igates these effects. However, it does not completely correct the trajectory of the

vehicle. In some cases, it does not even improve performance. In any case, these

tests show that the effects of ocean currents do not compromise front tracking.

Figure 5.14 shows one run with the same parameters and front conditions used

in the run from Figure 5.9, but taking into account the effects of the water veloc-

ity. This simulation is the most realistic of the overall test plan. The maps built

from the sampled salinity data characterize the front in the band of interest. Fig-

ure 5.15 shows the salinity map built with the data collected during the mission

represented in Figure 5.14. Transitions from the front to ocean waters are easily

identified in this map.
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Figure 5.14: Simulation run from simulation set E. Zigzag algorithm in the pres-
ence of ocean currents (satellite image of the Douro estuary as background).

Figure 5.15: Salinitymap obtained from the data collected in the test represented

in Figure 5.14.

5.4 Summary
In this chapter, we considered the problem of tracking and mapping a river

front with an AUV and solved it with the help of novel trajectory adaptation

algorithms. The approach was evaluated and tested in simulation using a high-

resolution hydrodynamic model of the front. The test plan included 307 test

cases covering the most representative environmental conditions. This was an

interdisciplinary endeavor at the intersection of robotics and oceanography. The

focus was not only on robotic exploration but also on the scientific study of the



94 Linear Front Approximation for Single-agent Systems

front. The test plan shed some light on the structure of the front propagation,

evolving from an initial sharp variation of salinity to a situation in which the

front has two sharp edges separated by a plateau, thus presenting an added diffi-

culty to some tracking algorithms. This observation also provided insights into

trajectory adaptation and, more importantly, into selecting the initial location

for the AUV. Space limitations preclude a thorough discussion of the results,

but our parameterizable approach and the study of the conditions for param-

eter selection will be at the heart of a decision support system for optimized

front studies. Future work will also use machine learning techniques to opti-

mize tracking and mapping campaigns. Extensions to multi-agent settings are

also being considered.



Chapter 6

Least Squares Front Estimation for
Single-agent Systems

In this chapter, we consider the problem of tracking moving algal bloom fronts

using an AUV equipped with a sensor that measures the concentration of chloro-

phyll a. Chlorophyll a is a green pigment found in plants, and its concentra-
tion indicates phytoplankton abundance. Our algal bloom front-tracking mis-

sion consists of three stages: deployment, data collection, and front tracking. At

the deployment stage, a satellite collects an image of the sea from which the

location of the front, the reference value for the concentration at this front, and,

consequently, the appropriate initial position for the AUV is determined. At the

data collection stage, the AUV collects data points to estimate the local algal

gradient as it crosses the front. Finally, at the front tracking stage, an adaptive

algorithm based on recursive least squares fitting using recent past sensor mea-

sures is executed. We evaluate the algorithm’s performance and sensitivity to

measurement noise through MATLAB simulations. We also present an imple-

mentation of the algorithm on a realistic software platform for marine robots

and validate it using simulations with satellite model forecasts from Baltic sea

data.

This chapter is organized as follows. In Section 6.1, the main problem is for-

mulated, and we give an overview of the components included in the experimen-

tal setup. We explain the front tracking algorithm in Section 6.2. In Section 6.3,

we describe the implementation of the algorithm and simulations using satellite

data of chlorophyll a concentration. Concluding remarks and future directions
follow in Section 6.4.

95
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Figure 6.1: Experimental setup including the AUV, satellite, DUNE, IMC, and

Neptus.

6.1 Problem Formulation
We consider the problem of detecting and tracking irregular, moving, and time-

varying algal bloom fronts.We propose a solution that consists of an experimen-

tal setup as in Fig. 6.1, composed of an AUV with a chlorophyll a concentration
sensor, a control and detection algorithm implemented in the software platform

DUNE [123], a message protocol implemented in IMC [124], a visualization

tool implemented on Neptus [125], satellite data from the previous day, and the

CMEMS simulated chlorophyll a data of the region from the past months [126].

6.1.1 Algal blooms
In Fig. 6.2, we plotted two time instances of a forecasted chlorophyll a con-
centration field, part of the Baltic Sea biogeochemistry analysis and forecast
product [126]. The spatial resolution is 2 km by 2 km, the time resolution is

hourly, and we selected data from the east coast of Sweden, near Stockholm,

from February 2020. The range from 0 (dark blue) to 1 (yellow) indicates the

chlorophyll a concentration. The white areas represent land and correspond to
the archipelago near Stockholm, Sweden.

We define a front (red) as a level set of a time-varying scalar field δ : R ×
R
2 → R:

F (t) = {p ∈ R
2 : δ(t,p) = δref}, (6.1)
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Figure 6.2: CMEMS simulation data of chlorophyll a in the Baltic Sea, at dif-
ferent time instances, with higher concentration (yellow), lower concentration

(blue), land (white), and the front F (t) (red line).

where δref is some reference value, p the position and t time.
The reference δref is chosen according to the latest satellite data of the lo-

cation before the mission starts. It can be seen as a calibration of the AUV to

different algal bloom situations.

6.1.2 Experimental setup
The components of the experimental setup are described next.

Satellite data – collected in the experiment area is used to initialize the
controller, including the reference value and initial gradient estimate. CMEMS

provides forecasts used for simulations before mission execution.

The AUV – has a sensor to measure the concentration of chlorophyll a. See
the UAV SAM from SMaRC (Swedish Maritime Robotics Centre, KTH [127])

with the Total Algae sensor from YSI [128] in Fig. 6.3.
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Figure 6.3: Top: SAMUAV from SMaRC. Bottom: Total Algae sensor fromYSI

The AUV onboard software contains the sensing, communications, nav-
igation, and control software used during the operation. We used the LSTS

toolchain containing DUNE, IMC, and Neptus for the implementation. For a

detailed overview of the toolchain’s components and capabilities, see [119].

DUNE is a platform- and architecture-independent runtime environment for the

robot’s onboard computer. It provides a simple and unified programming in-

terface for writing embedded software components for marine robotics, such

as navigation filters, controllers, or sensor drivers. Each software component

is represented as a DUNE Task, an isolated code section executed in its op-

erating system thread. DUNE tasks communicate exclusively using IMC mes-

sages exchanged through a global shared message bus. Tasks can expose param-

eters (e.g., controller gains) that may be set in plain text configuration files and

changed on the fly in the Neptus’ operator console. DUNE contains an imple-

mentation of a navigation and control suite for the AUV and a detailed full-order

AUV simulator. The simulator is used as a drop-in replacement of the sensor and

actuator drivers, which would interact with the real vehicle hardware, allowing

us to simulate the same code that will later be deployed on the real robot.

Themission control softwaremonitors the system’s position and operating
state during the mission and retrieves collected data from the vehicle’s storage.

Neptus is a command and control application software providing a configurable

and extensible graphical interface for mission planning, simulation, control, and

review analysis.

Finally, the mission control systems are comprised of all the operators,
support staff, and systems involved in the mission. This may include research

vessels or other manned or unmanned systems used to deploy and recover the

AUV.
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Figure 6.4: Illustration of the three stages of the front tracking algorithm.

6.1.3 Problem
The problem considered in this chapter is how to track irregular and dynamic

algal bloom fronts using the described experimental setup. The solution is a

front-tracking algorithm consisting of a control law and a gradient estimator, as

presented in the next Section.

6.2 Front Tracking Algorithm
Given the abovementioned problem, we present a solution split into three stages,

as illustrated in Fig 6.4. The first stage (indicated by 1 in the figure) is initial-

ization and deployment aided by the satellite or forecast data, the second one

(2) is finding and approaching the front, and the final one (3) is persistent front

tracking.

The initialization stage selects the chlorophyll a reference value δref and the
vehicle’s initial position and heading. We assume that suitable values for these

parameters can be obtained by examining satellite or forecast data correspond-

ing to a point in time sufficiently close to the mission start time.

The front finding and approaching stage are led by the control law, which
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Figure 6.5: AUV control architecture

gives a velocity reference as a function of the measured chlorophyll a concentra-
tion at the vehicle’s position. This velocity reference will lead the vehicle to the

front location when it is away from the front and make it travel along the front

when it is close. An essential ingredient in the control law is the concentration

gradient, estimated from the measurements taken by the vehicle. The estimator

computes an approximate gradient value at the vehicle’s location using a local

linear approximation of the chlorophyll a concentration. The final stage is per-
sistent front tracking, which consists of keeping the AUV in and around the front

for the mission’s duration.

We summarize the overall architecture of the front-tracking algorithm in

Fig. 6.5. In the remaining subsections, we describe the control law, the gradient

estimator, and the AUV model.

6.2.1 Control Law
Assume for the moment that the reference value δref is known and that the AUV
is holonomic, that is, the dynamics are given by

ṗ = u,
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where p = (x, y) is the vehicle’s position and u is the velocity control. We
define the feedback velocity law as:

u(t,p) = αseekuseek(t,p) + αfollowufollow(t,p)

useek(t,p) = −(δ(t,p)− δref)∇δ(t,p)

ufollow(t,p) = Rπ/2∇δ(t,p),

(6.2)

where ∇δ is the gradient of δ with respect to p and Rπ/2 is a mapping which

rotates vectors by 90 degrees. This feedback law has two components: the useek
component controls the vehicle to the level set of δ corresponding to the front by
following the gradient vector field, while ufollow makes the vehicle travel along
the front. The direction in which the vehicle travels along the front after having

reached it is determined by the orientation of Rπ/2.

It can be seen that if the front F (in (6.1)) is static (i.e., ∂δ/∂t ≡ 0) then the
feedback law u achieves convergence of the vehicle’s position to the front (i.e.,
δ(t,p(t)) → δref ) as long as ∇δ 	= 0 so that the vehicle does not get stuck in a
critical point of δ. When the front is not static, there is no such guarantee. We
assume that the vehicle can move and take measurements at a time scale much

faster than that at which the chlorophyll a field is changing so that we can view
the time variation of δ as a perturbation.

6.2.2 Gradient estimator
In order to realize the control law (6.2), the gradient ψ(t) := ∇δ(t,p(t)) is
needed. The vehicle takes noisy measurements of the concentration at discrete

instants of time:

yk = δ(tk,p(tk)) + εk,

where tk are the measurement times and εk is the measurement noise. We as-
sume the position of the vehicle at the measurement times, pk := p(tk) is
perfectly known. We can then define the data available to the vehicle at time

t ∈ [tk, tk+1) as

D(t) = ((p0, y0), (p1, y1), . . . , (pk, yk)).

The gradient estimation problem is then to construct an estimate ψ̂(t) of ψ(t)
based on D(t).
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We propose to construct such an estimate as follows. Let tk be the time of
the most recent measurement, and take n such that the set of measurements

Dn(t) = ((pk−n+1, yk−n+1), . . . , (pk, yk))

satisfies the following conditions:

• the measurements are taken sufficiently close together in time so that the

concentration is approximately constant on [tk−n+1, tk];

• the measurements are taken close together in space.

These assumptions allow us to replace δ by its first-order Taylor approximation
on a set containing the measurement positions:

δ(t,p) ≈ δ(t�,p�) +∇δ(t�,p�) · (p− p�),

where p� is some position in this set and t� ∈ [tk−n+1, tk] is some time instant.
We define

ψ̂ = ∇δ(t�,p�)

δ0 = δ(t�,p�)−∇δ(t�,p�) · p�,

so that

δ(t,p) ≈ δ0 + ψ̂ · p.
Applying this equation to thenmeasurements inDn(t), we get a set of equations
which are linear in δ0 and ψ̂, which can be solved with standard least squares
methods. An alternative is to use recursive least squares with exponential for-

getting.

6.2.3 AUV model
We adopt a typical 3-degree of freedom (surge, sway, and yaw) model for the

AUV [129]. It is represented as

η̇ = R(ψ)v

M v̇ +C(v)v +D(v)v = τ , (6.3)

where η = [x, y, ψ]T is the cartesian position [x, y] and angle ψ, v = [u, v, r]T

are the velocities, andR(ψ) := Rz,ψ is the rotational matrix.
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6.3 Simulation Results

6.3.1 MATLAB simulations
In this subsection, we approximate the kinematics of the AUV by a single inte-

grator, ṗ = u. We simulated a 20 hour mission, having the length of saved data
Dn(t) as n = 20 and the algal front concentration reference as δref = 2. Having
measurements taken with a period of 3 minutes, we choose to start the gradient

estimation after the first hour. We set the parameters αseek = 6 and αfollow = 2
of the control law u(t). We deploy the AUV at p(0) = [65, 1] with an initial
algal gradient estimate of ψ̂(0) = [1,−1]. We introduce a measurement error
in the chlorophyll a sensor of the form δmeasured(t) = δreal(t) + δnoise(t) with
maximum noise of about 0.4.
Fig. 6.6 shows five instances of the algal front tracking mission. The first

shows the initial position at which the AUV was deployed and its convergence

towards the algal front F (t). The following figures indicate a constant and ac-
curate tracking of the algal bloom front. Here, we can also see the gradient es-

timator ψ̂ indicating a fair estimation of the normal vector to the algal front on
the AUV’s position.

Tracking and estimation errors are depicted in Fig. 6.7. The first figure con-

tains three chlorophyll a concentration values: the measurement δmeasured(t), the
real chlorophyll a concentration δ(t), and the reference δref . The oscillation
around the reference value represents the deviation to the front. Here, notice

two things: first, the measured and real values have a difference corresponding

to the sensor noise; second, the AUV starting point is far from the front, but it

then oscillates around the reference value of chlorophyll a concentration.
The second figure illustrates the distance of the AUV to the closest point

of the front F (t): inff∈F (t) ‖f − p(t)‖. Here, the initial distance is large as
the AUV starts far from the front. Then, the distance oscillates around zero,

indicating a zig-zag motion around the front. The last figure depicts the angle

of the estimated gradient, ∠ψ(t). By plotting the angle, we can evaluate the
variation of directions towards the front F (t).

6.3.2 DUNE controller implementation
In the DUNE control implementation, a two-step waypoint generation scheme is

used, where the robot performs a ‘zig-zag’ motion of amplitude θ and horizon-
tal displacement d around a mean bearing angle ψu. This is depicted in Fig. 6.8.



104 Least Squares Front Estimation for Single-agent Systems

Figure 6.6: Time-lapse of the AUV (blue rectangle) and its gradient estimator

ψ (orange arrow) tracking the algal front (red contour)) with a representation of
the AUV’s path (green).
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Figure 6.7: First plot: measured chlorophyll a concentration δmeasured(t), local
chlorophyll a concentration δ(t), and reference chlorophyll a concentration δref .
Second plot: distance from the AUV to the closest point in the front, ‖F (t) −
p(t)‖. Third plot: angle of the estimated gradient, ∠ψ(t).

After the vehicle reaches the second waypoint, the measurements collected dur-

ing the motion are used to estimate the gradient as described above, and a new

bearing reference ψu is computed using (6.2). The vehicle travels at a constant

speed so that only the relative size of αseek and αfollow in (6.2) is relevant, and we
fix αfollow = 1. The value of δ used in the computation of u is the most recent
sample.

As above, the gradient estimate ψ̂ is initialized with a given value. Gradient
estimation is performed only after the average concentration is within a thresh-

old error δthr of δref . Thus, initially, the vehicle travels in a straight line (i.e.,
d, θ = 0), and a fixed track distance is used to compute the next waypoint, with
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Figure 6.8: Waypoint generation scheme.

the track bearing given by (6.2).

The chlorophyll a concentration field is simulated using numerical data on
a regular time-latitude-longitude grid. A DUNE task simulating the chloro-

phyll a concentration sensor reads messages containing the vehicle’s current
position, linearly interpolates the numerical data to the vehicle position and cur-

rent time, and dispatches an IMC message containing the current concentration

value. The controller task then reads these messages, which stores them together

with the corresponding vehicle position.

6.3.3 DUNE simulation results

αfollow d θ Speed δref δthr
25 250 m 45 deg. 5 m/s 1 mg/m3 0.1 mg/m3

Table 6.1: Controller parameters used in the DUNE simulation.

We simulated an approximately 32 hour mission with the controller param-

eters shown in Table 6.1. The vehicle samples the chlorophyll a concentration
at its position every 3 seconds with Gaussian measurement noise of variance

0.001 mg/m3. Fig. 6.9 shows the vehicle’s position and the chlorophyll a con-
centration field at two instants of time. Blue regions indicate low concentration

values at the corresponding position, while green regions indicate high con-

centration values. The red curves represent the front F (t) at the corresponding
instant. After the initial approach phase, the vehicle successfully tracks the time-

varying front.
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Figure 6.9: Two time instants (t = 10 h and 25 h) of the mission. The black line
shows the AUV path over the preceding 10 hours.

Fig. 6.10 shows the chlorophyll a concentration measured by the vehicle,
normalized to the maximum value contained in the data. The shaded blue area

indicates the value of δthr. One can see that the vehicle loses track of the front
at around t = 18 h. This is because the chlorophyll a field changes significantly
between t = 18 h and t = 19 h, so the assumptions considered in the estimator
design are no longer valid. After this sudden change, the vehicle recovers the

front and tracks it successfully again, showing that the algorithm is robust to

temporary assumption violations.

6.4 Summary
In this chapter, we considered the problem of algal bloom front tracking using

a sensing AUV. We assumed the AUV has a GPS receiver that reports its po-

sition and a chlorophyll a concentration sensor, which measures the local algal
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Figure 6.10: Chlorophyll a concentration measured by the vehicle.

concentration. We proposed an experimental setup composed of satellite data,

AUV hardware, software, CMEMS forecasted data, and an algorithm in which

the AUV estimates the local algal gradient using recent past measurements and

least squares fitting. We provided a MATLAB simulation and analyzed conver-

gence given sensor noise. The AUV converged and moved along the detected al-

gal bloom front for the mission’s duration. The algorithm was also implemented

on the LSTS Toolchain using model forecasts of the chlorophyll a concentra-
tion in the Baltic Sea in February 2020 from CMEMS. Our plan is to do tests

on the Baltic Sea using our algorithm implemented on DUNE and algal bloom

forecasting using satellite data of different water properties, such as salinity,

temperature, and water currents.



Chapter 7

Gaussian Process Front Estimation
for Single-agent Systems

This chapter investigates using satellite data to improve adaptive sampling mis-

sions for front tracking. Our system finds and tracks algal bloom fronts using an

Autonomous Underwater Vehicle (AUV) equipped with a chlorophyll a concen-
tration sensor and satellite data. The proposed method learns the kernel param-

eters for a Gaussian process (GP) model using satellite images of chlorophyll a
from the previous days. Then, using online data collected by the AUV, it takes

the gradient of the concentration to obtain the direction of the algal bloom front.

TheAUV tracks the front using a novel gradient estimator andmotion controller.

The performance of this method is evaluated through realistic simulations for

an algal bloom front in the Baltic sea. We compare the performance of different

estimation methods. A sensitivity analysis is performed to evaluate the impact

of sensor noise.

This chapter is organized as follows. In Section 7.1, the main problem is

formulated, and we give an overview of the components included in the setup.

In Section 7.2, we introduce the proposed front tracking algorithm. This in-

cludes the high-level system architecture, the dataset we use, the GP model for

the chlorophyll a concentration in the Baltic sea, and the path planning guid-
ance law. In Section 7.3, we provide results from realistic simulations, and in

Section 7.4, a sensitivity analysis on the impact of sensor noise on algorithm

performance, comparing and evaluating different gradient estimation methods.

Concluding remarks, discussion, and future directions follow in Section 7.5.
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Figure 7.1: System overview, including the AUV, the GPS, the Sentinel satellite,

and the CMEMS data.

7.1 Problem Formulation
This chapter proposes an approach for adaptive sampling of algal bloom fronts

using an AUV informed by satellite imagery. The proposed algorithm enables

tracking multiple water parameters, including chlorophyll a concentrations, tur-
bidity, dissolved oxygen, and salinity. Out of these broad sampling possibilities,

we are particularly interested in chlorophyll fronts due to their connection with

harmful algal blooms (HABs) in the Baltic [130]. In Fig. 7.1, we illustrate this

cyber-physical system, consisting of the AUV, the GPS signal that it uses for lo-

calization, the Sentinel satellite, which provides raw imagery of the region, and

the Copernicus Marine Environment Monitoring Service (CMEMS), which re-

analyses the imagery from the Sentinel satellite into more accurate datasets that

can be used to inform our AUV.

7.2 Front Tracking Algorithm
This chapter considers algal bloom front tracking as an adaptive environmen-

tal sampling problem. Our algal bloom front tracking aims to find and track a

front with limited global information on its location and shape but to use lo-

cal information collected by the AUV as it moves to explore the environment.
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Figure 7.2: Front tracking system architecture with its main components: satel-

lite, GP model estimator, gradient estimator, motion controller, and AUV.

This limited global information consists of satellite imagery from previous days.

Then, the AUV has to decide where to explore next, given the information it has

collected so far. We approach this problem using an AUV with a chlorophyll a
sensor and remote satellite data from CMEMS. Our solution consists of a novel

system to be introduced in the following Subsections.

7.2.1 System Architecture
The system architecture for the algal bloom front tracking system is summarised

in Fig. 7.2. Its main components are the AUV, motion controller, gradient esti-

mator, GP model estimator, and satellite data collector.

The AUV has a chlorophyll a sensor that measures the chlorophyll a concen-
tration at a set frequency as it moves in the field. The AUVmovement is dictated

by the control command received from the motion controller. The motion con-

troller uses the AUV’s past measurements and a gradient estimate to compute

the control command. The gradient estimator uses the past measurements taken

by the AUV and a model of the chlorophyll a concentration to estimate the con-
centration gradient. The GP model estimator uses the previous days of satellite

data to train kernel parameters of a concentration GP model. The satellite data

consists of chlorophyll a concentration field from a few days preceding the mis-
sion.
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Figure 7.3: CMEMS data of chlorophyll a in the Baltic Sea (blue-yellow) and
land (dark grey).

7.2.2 Satellite Data
The satellite data concerns chlorophyll a surface concentration for a given re-
gion. We denote this concentration field by δ(p), where p denotes the position.
Fig. 7.3 shows a sample of chlorophyll a concentration data, where regions of
high concentration are yellow, and regions of low concentration are blue. The

dark grey area represents the land. The data has a spatial resolution of 2 km by

2 km and is obtained from CMEMS [131]. The location is on the west coast

of Finland, near the coastal city Pori. A clear chlorophyll a bloom front can be
observed here, which can be due to the nutrients that the river Kokemäenjoki
carries into the Baltic Sea [132]. This paper will focus on the region marked by

the red square from April 17, 2021.

7.2.3 GP Model Estimator
The GP model estimator models the chlorophyll a concentration for the given
region and time, exploiting prior information from satellite data of the previous

days and measurements taken by the AUV in real time. Given the slow time

scale, we assume that the chlorophyll a concentration on different days has sim-
ilar statistical distributions.

To obtain the chlorophyll a concentration GP model, we must first define
the kernel that will accurately depict the process. The kernel represents a priori
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knowledge by specifying how the chlorophyll a concentration is related to the
spatial location. Among the many kernels described in the literature, only some

fit the characteristics of the biogeochemical data we consider.We use theMatérn

kernel [133], which will be shown to be capable of modeling different degrees

of smoothness across both vertical and horizontal length scales [134]. The co-

variance matrixK ∈ R
N×N is defined for two points xi and xj in the field map.

Each matrix element is given by the kernel function k(xi, xj), 1 ≤ i, j ≤ N .
The kernel is defined as

Ki,j = k(xi, xj) = σ2(1 + ri,j)e
−ri,j , (7.1)

where r2i,j = (xi − xj)
�M(xi − xj), with

M =

[
3
l20

0

0 3
l21

]
. (7.2)

The kernel hyper-parameter σ2 represents the variance of the chlorophyll a con-
centration process, and (l0, l1) the length scales. The hyper-parameters are es-
timated by maximizing the log marginal likelihood function of the prior dis-

tribution using satellite data from previous days. This training set consists of

N positions X = [p1, ...,pN ] and their respective chlorophyll a concentration
values y = [δ1, ..., δN ]. The log marginal likelihood [133] to maximize is

log p(y|X) = −1

2
y�(K + σ2I)−1y − 1

2
log |K + σ2I| − N

2
log 2π. (7.3)

Using the trained kernel, the GPmodel for the chlorophyll a concentration is
obtained from the standard conditioning formulae [133]. Consider thenmost re-
cent measurements taken by the AUV. It contains the positionsP = [p1, ...,pn]
and its measurementsΔ = [δ1, ..., δn]. The mean of δ(p) is denoted δ̄(p) and
the covariance cov(δ(p)). The mean and covariance at some point p∗ are given
by

δ̄(p∗) = K∗
(
K + σ2I

)−1
Δ , (7.4)

cov(δ(p∗)) = K∗∗ −K∗
[
K + σ2I

]−1
KT

∗ , (7.5)

where K ∈ R
n×n corresponds to the covariance between the data in points P,

K∗ ∈ R
1×n the covariance between the data in points p∗ and P, K∗∗ = σ2
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corresponds to the variance at p∗, and σ2 is the variance of the measurement

noise.

To evaluate the accuracy of the GP model applied to chlorophyll a concen-
tration fields, the kernel is trained using both low- and high-resolution datasets.

These datasets correspond to satellite data, analyzed and processed with differ-

ent algorithms by CMEMS. Then, the goodness of fit of both sets of parameters

is evaluated by comparing the respective predictions of the chlorophyll a con-
centration to the ground truth. Using past satellite data, we construct the set X
and y in (7.3) from data from multiple process realizations. Such division of
the training dataset prevents overfitting. Then, X and y are composed of data
from 3 days before the prediction date, selecting non-overlapping randomly scat-

tered sub-datasets of the same size each day. The optimization algorithm for the

maximization of (7.3) is L-BFGS-B [135]. The resulting parameters follow in

Table 7.1.

Table 7.1: Kernel hyper-parameters obtained through maximum likelihood es-

timation, using the low-resolution and high-resolution datasets.

σ2 l0 l1
Low resolution 44.2959 0.5465 0.2890

High resolution 18.2106 0.0559 0.0245

The results of this comparison are presented in Fig. 7.4a and Fig. 7.4b. The

observations and test datasets are approximately of size 1500 and 13500, re-

spectively, where the former is a set of scattered samples from the ground truth

data in Fig. 7.4c, having a standard deviation of σ2
n = 10−3.

Visually, the results are very similar. The average relative error of the pre-

diction compared to the ground truth data in Fig. 7.4c was approximately 12%

and 11% using low- and high-resolution data, respectively. Based on the simi-

larity between the results, we conclude that the proposed GP model accurately

represents the statistical properties of the chlorophyll a concentration in the op-
erations scenario, even when the training dataset is different from the ground

truth data.

7.2.4 Gradient Estimator
The gradient estimator uses the previously obtained model of the chlorophyll a
concentration to estimate the chlorophyll a concentration gradient. From the
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(a) Predicted mean using low resolution data.

(b) Predicted mean using high resolution data.

(c) High resolution dataset that simulates the ground truth.

Figure 7.4: Predicted mean from scattered measurements compared to the

ground truth (high-resolution data).
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equation (7.4), the gradient ∇δ̄(p∗) is obtained by computing the derivative of
the predicted chlorophyll a concentration with respect to position p∗,

∇δ̄(p∗) = ∇p∗

[
K∗

(
K + σ2I

)−1
Δ
]
. (7.6)

Since the second and third terms inside the gradient in (7.6) are constant relative

to p∗, we only need to compute∇p∗K∗. Each element of theK∗ matrix is given
by (7.1), in which xi corresponds to p∗ and xj corresponds to pj ∈ P. So p∗,

∇p∗k(p∗,pi) = −σ2e−rM(p∗ − pj).

Note that the gradient of the kernel equation is not defined when the test point

inP is equal to the current position p∗. To account for this, the current position
p∗ is not included in P when computing (7.6). Then the gradient estimate at
position p∗ is

∇δ̄(p∗) = ∇p∗K∗
(
K + σ2I

)−1
Δ. (7.7)

7.2.5 AUV
The AUV receives the control command u from the motion controller, speci-
fying the direction and velocity reference. Then, using its internal lower-level

controller, the AUV turns this reference u into thrust commands τC . We con-
sider a 6DOF AUV model in which the state is the velocity vector given by

ν =
[
u v w p q r

]T
containing the translational and rotational ve-

locities. The AUV nonlinear system following Fossen [129] is as follows:

(MRB +MA)ν̇ + (CRB(ν) +CA(ν))ν +D(ν)ν + g(η) = τC , (7.8)

whereMRB is the rigid body mass and inertia matrix andCRB is the matrix of

Coriolis and centripetal terms on the left-hand side.MA andCA(ν) represent
the added mass effect, D(ν) represents the damping matrix, and g(η) is the
vector of gravitational and buoyancy forces and moments. τC is a vector of
external control forces based on the AUV’s actuator configuration. The damping

matrix D(ν) has a significant effect on the nonlinear hydrodynamics of the
AUV [136].

7.2.6 Motion Controller
The control law we propose is summarised in Fig. 7.5. It relies on the chloro-

phyll a gradient∇δ and the latest chlorophyll a concentration measurement δ to
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Figure 7.5: Control architecture with the motion controller, the gradient estima-

tor, and the AUV.

Figure 7.6: Seek and follow components of the control law and gradient.

produce a control command u. We define a front as a level set of a time-varying
scalar field δ : R× R

2 → R with a slight abuse of notation:

F (t) = {p ∈ R
2 : δ(t,p) = δref}, (7.9)

where δref is some reference value, p the position and t time.
Assuming that the reference value δref is known, we use the control law from

[137].
u(t,p) = useek(t,p) + ufollow(t,p)

useek(t,p) = −αseek(δ(t,p)− δref)∇δ(t,p)

ufollow(t,p) = αfollowRπ/2∇δ(t,p),

(7.10)

where∇δ is the gradient of δ with respect to p,Rπ/2 is a mapping which rotates

vectors by 90 degrees, and αseek and αfollow are tunable parameters.
As seen in Fig. 7.6, the control command consists of two components: useek,

which controls the AUV towards the front by following the gradient field, and

ufollow which controls the AUV to move along the front, perpendicular to the
gradient field. These two components ensure convergence to the front [138].



118 Gaussian Process Front Estimation for Single-agent Systems

Figure 7.7: CMEMS data of chlorophyll a concentration in the Baltic Sea (blue-
yellow), clouds and cloud coverage (black), and land (dark grey).

7.3 Simulation Results
In this section, the control and estimation components of the proposed system

architecture are tested in a front-tracking procedure in the operational area in

Fig. 7.4c. The simulation starts by deploying the vehicle close to the front and

providing an initial heading setpoint towards it. When the AUV reaches the

front, the gradient estimation is triggered, and the control law receives the es-

timated value from the GP model as an input. The section is divided into three

subsections: simulation setup, numerical results, method analysis, and compar-

ison.

7.3.1 Simulation setup
In this Subsection, we introduce the setup for the simulations. We consider the

environment illustrated in Fig. 7.7 in which we will deploy the AUV and track

the algal bloom front. Here, the chlorophyll a concentration is represented by a
map that goes gradually from a high concentration in yellow to a low concen-

tration in blue. The simulated mission occurs inside the red square. The data

used to simulate this environment has a spatial resolution of 300 m by 300 m

[139] from the exact satellite data location considered earlier. This environment

is modeled within the Stonefish simulation environment. The chlorophyll a con-
centration map from the satellite image is integrated as a lookup table to enable
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AUV sampling.

The source code implementing the algorithm is available as an open-source

contribution on two repositories. The first one is the Gaussian Processes for

Adaptive Environmental Sampling (GP4AES) library, which includes the GP

model estimator, the gradient estimator, and the motion controller https:
//github.com/JoanaFonsec/gp4aes. The second one is the ROS
[140] interface, which uses the GP4AES library and handles the connection

with the AUV’s software https://github.com/JoanaFonsec/alg
albloom-tracking.
The simulation starts by deploying the AUV close to the front and provid-

ing an initial estimated gradient. When the AUV is near the front, the gradi-

ent estimator is triggered. The AUV travels at a constant speed of v = 1 m/s.
Moreover, based on the available satellite data, we consider δref = 7.45mg/m3.

While tracking the front, the AUV collects measurements at a frequency f = 1
Hz while considering a standard deviation of the measurement noise of σ =
10−3 mg/m3. The measurements are filtered using a weighted moving average

filter, with w = [0.2, 0.3, 0.5]:

δfiltered(t) = w−2δ(t− 2) + w−1δ(t− 1) + w0δ(t). (7.11)

With the same sampling rate, the gradient is estimated as in (7.6), using data

from the last n = 200measurements, applying a first-order low pass filter, with
α = 0.97,

∇δfiltered(t) = α∇δ(t− 1) + (1− α)∇δ(t). (7.12)

7.3.2 Numerical results
In this subsection, we present and analyze the results from simulated missions

using two gradient estimation methods.

We illustrate the AUVmission in Fig. 7.8. The AUV follows the front while

collecting chlorophyll a concentration measurements, estimating the chloro-
phyll a concentration and its gradient. The complete mission has a duration of
approximately 23 hours. The starting position is far from the bloom and repre-

sented by the white star, while the final position is on the front and represented

by the white square. The AUV closely follows the algal bloom front.

In Fig. 7.9, we zoom in on a region of the longer mission, previously defined

by a blue square, to focus on the performance of the gradient estimation and

front tracking algorithm. This region corresponds to about 5 hours of mission
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Figure 7.8: Overview of the full mission having the trajectory of the AUV (red)

tracking the front (black) in the chlorophyll a field (blue-yellow). The white star
indicates the initial position, and the white square the final position.

time. Here, we illustrate the gradient performance through arrows representing

the true and estimated gradients along the path. The true gradient refers to the

gradient that the AUV would be able to compute if it had access to the global

information of the field. We compute it by taking the spatial derivative of the

chlorophyll a concentration. The estimated gradient refers to the output of the
gradient estimator (7.7). The angle between the true and estimated gradient ar-

rows indicates the gradient error. Note that the chlorophyll a concentration is
fast-changing even in small areas. The gradient error is large at paths with high

curvature. Let us zoom in on the two areas inside the blue squares.

Fig. 7.10 corresponds to the two zoom-in locations in the previous figure;

the front is the thin black line, and a thicker red line represents the AUV path.

We also plot the seek and follow components of the control law using arrows
along the AUV path. The control law is constructed as in (7.10) and is a sum

of the seek component, which has the same direction as the estimated gradient,

and the follow component, which has a perpendicular direction with respect to

the estimated gradient. The first zoom-in corresponds to about 15 minutes of

mission time. Here, for both estimators in Fig. 7.10a and Fig. 7.10b, the AUV

follows the front closely, with small errors and without visible differences be-

tween the estimators. This is expected as the front has a small curvature. The

control seek component accounts for small adjustments in the trajectory. The

second zoom-in corresponds to about 30 minutes of mission time. In Fig. 7.10c
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(a) GP estimator.

(b) LS estimator.

Figure 7.9: Trajectory of the AUV (red) tracking the front (black line), with

arrows representing the true and estimated gradient.

and Fig. 7.10d, the AUV remains on top of the front most of the time; thus, the

control follow component dominates the control law. On the other hand, once

the curvature changes faster, the AUV cannot track the front. Two leading causes

for this behavior are the AUV’s turning radius and the update function with the

update rate on the gradient. The gradient’s update function in (7.12) introduces

a delay and a cut-off frequency. This cut-off frequency is inversely proportional
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(a) GP estimator. (b) LS estimator.

(c) GP estimator. (d) LS estimator.

Figure 7.10: AUV path (red) tracking the front (black), with arrows representing

seek and follow components of the control law.

to the update rate. Hence, the algorithm’s performance becomes a trade-off be-

tween the smoothness introduced by the update function with a lower update

rate and the delay it introduces. As for the performance comparison between

the two gradient estimation methods, it is apparent from Fig. 7.10 that the GP

gradient estimator allows for closer tracking of the front, most notably at regions

with fast-changing curvature.

We further analyze the algorithm’s behavior through time series plots in

Fig. 7.11 and Fig. 7.12 corresponding to the zoom-in area in Fig. 7.9. First, we

consider the chlorophyll a concentration measurements taken along the path in
Fig. 7.11. The time series indicates that the AUV can track the desired concen-

tration of δref = 7.45mg/m3 well with an error lower than±0.1mg/m3. Second,

we consider the gradient field estimation in Fig. 7.12. The gradient estimators

perform equally well.

Finally, let us analyze the control law, considering the time series of the two

control components useek and ufollow, in Fig. 7.13, for the regions defined in
Fig. 7.10. In Fig. 7.13a and Fig. 7.13b, we consider the first zoom-in area with

an almost linear segment of the front. Here ufollow ≈ 1, and useek is near zero
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(a) GP estimator.

(b) LS estimator.

Figure 7.11: Concentration of chlorophyll a: measurements from the AUV, and
reference value.

(a) GP estimator.

(b) LS estimator.

Figure 7.12: Gradient of chlorophyll a: AUV estimated gradient, and true gra-
dient.
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(a) GP estimator.

(b) LS estimator.

(c) GP estimator.

(d) LS estimator.

Figure 7.13: Control law components: seek and follow.

most of the time. In Fig. 7.13c and Fig. 7.13d, we consider the second zoom-in,

which contains two tight curves. Here ufollow ≈ 1, with exceptions at t = 8.79
and t = 9.02, corresponding to the two peaks in the trajectory curvature in
Fig. 7.10c and Fig. 7.10d. Note how the seek component increases when the

AUV is far from the front.
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Figure 7.14: Influence of sensor noise in the tracking error, for two different

estimation algorithms: GP and LS.

Figure 7.15: Influence of sensor noise in the gradient estimation error, for two

different estimation algorithms: GP and LS.

7.4 Sensitivity Analysis
In this Subsection, we analyze the performance of the estimation algorithms for

varying levels of chlorophyll a concentration sensor noise. The sensor noise we
consider for this analysis varies between 10−3mg/m3 and 10−1mg/m3. This is in

line with the chlorophyll a concentration sensors in the market, which typically
have a resolution of at least 10−1mg/m3 [141].We then runmultiple simulations

using different standard deviations of the sensor noise and estimation methods.

We obtain both the gradient estimation and tracking errors from each simulation.

The gradient estimation error corresponds to the difference between the true

gradient∇δ(t) and the estimated gradient∇δ̄(t). Fig. 7.14 illustrates the impact
of sensor noise on this error. Here, the tracking error increases with the sensor
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noise for both estimators. The difference in performance between the estimators

also grows. The tracking error corresponds to the difference between the mea-

sured chlorophyll a concentration δ(t) and the chlorophyll a reference δref . In
Fig. 7.15, we illustrate the impact of sensor noise on this error, which increases

with the sensor noise for both estimators.

This comparison shows that the GP estimator performs better than the LS-

based estimator, particularly for a standard deviation of sensor noise of more

than 0.01mg/m3.

7.5 Summary
In this chapter, we considered the problem of how to use satellite data to im-

prove adaptive sampling missions of an AUV equipped with a chlorophyll a
sensor. We developed the adaptive sampling algorithm and software packages

to build a solution for the environmental sampling problem. Our solution uses

GPs to model chlorophyll a fronts using satellite data and integrates such model
into a front tracking algorithm. This integration is done using the estimate of

the chlorophyll a gradient field in the control law. We confirmed the goodness
of fit of the GP model by using scattered data points from a higher resolution

satellite data and were able to reconstruct the chlorophyll a field using the GP
model. We implemented the developed algorithm in the AUV’s software and

ran realistic simulations using the model of our AUV and chlorophyll a sensor
model. These simulations resulted in accurate front tracking with low gradient

estimation error.

We considered the two most important performance metrics for our objec-

tive to be gradient estimation and front tracking errors. Concerning these met-

rics, the sensor noise analysis indicated that the gradient estimation using GP

results in smaller errors compared to when using LSQ, mainly when the sensor

noise is bigger or equal to 0.01mg/m3, which corresponds to most chlorophyll a
concentration sensors on the market. We did not consider other performance

metrics, such as computation time, because both methods appeared fast enough

to generate an estimate in real-time. We also did not consider the computation

time for model fitting prior to the survey as it’s not running in real-time and thus

not affecting performance. However, for some applications with fast-changing

environments, it could be relevant to train the model during the survey. The GP

estimator requires a GP model to be fit prior to the mission, which takes a few

minutes, as opposed to the LSQ algorithm, which requires no prior fitting.
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Marine Experiments

In this chapter, we implement the method developed in Chapter 7 on an AUV

and run experiments in the Stockholm archipelago in the summer of 2022. We

design an experimental setup consisting of a cyber-physical system integrating

the AUV software, the AUV hardware, the user interface, and a realistic simula-

tor. Numerous packages are included in the AUV software, which can be divided

into the behavior tree, the algal bloom front tracking, the onboard controllers,

and the dead-reckoning. The algal bloom front tracking library has been devel-

oped for the present work and includes the control law and two implemented

estimation methods. We provide experimental results from two surveys in the

Stockholm archipelago in the Baltic Sea. In these experiments, we demonstrate

that the proposed algorithm performs well in the real-time real-world scenario

and compare them to a simulation under experiment conditions. We also exam-

ine the sources of error, namely surface waves that influence the AUV’s move-

ment but also partially occlude the GPS receiver, which introduces Gaussian

noise on the GPS-measured position of the AUV.

This chapter is organized as follows. In Section 8.1, we introduce the com-

ponents included in the experimental setup. This includes the AUV hardware,

the Stonefish simulator, the user interface, and the AUV software containing

a behavior tree, our algal bloom front tracking algorithm, onboard controllers,

and dead reckoning. In Section 8.2, we provide the results from the experimental

surveys. Concluding remarks and future directions follow in Section 8.3.
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Figure 8.1: The cyber-physical system architecture integrates the user interface,

AUV software, AUV hardware, and simulator.

8.1 Experimental Setup
The test platform used in these experiments is the Small and Affordable Mar-

itime (SAM) research AUV, a platform that was developed at the Swedish Mar-

itime Robotics Centre (SMaRC). The algal bloom front tracking system is inte-

grated with the AUV to be deployed in the field and validated experimentally.

Fig. 8.1 illustrates the system architecture of the experimental setup. The

user interacts with the AUV software system through an interface that enables

the user to send mission plans and monitor the current status. A behavior tree

monitors the mission status and delegates actions to an algal bloom front tracker.

The algal bloom front tracker reads payload measurements of chlorophyll a data
and sends waypoints to onboard feedback controllers. The entire software sys-
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Figure 8.2: The SAM AUV developed by SMaRC.

tem can also be executed via the Stonefish simulator [142]. Each component

will be further described in the following Subsections.

8.1.1 AUV Hardware
We begin by describing the SAM AUV hardware shown in Fig. 8.2. It is a

torpedo-shaped, under-actuated AUV [143], [144].

Its five key actuator subsystems are depicted in Fig. 8.3

1. The battery pack.

2. The longitudinal center of gravity (LCG) system uses the movable battery
pack to change the center of gravity position longitudinally and enable

static pitch control.

3. The variable buoyancy system (VBS) facilitates buoyancy regulation and
static depth control by pumping water in and out of a tank.

4. The transversal center of gravity (TCG) system contains rotating coun-
terweights that enable static roll control or changes to the AUV’s stability

margin.

5. The thrust vectoring system contains a servo-actuated nozzle for steer-
ing in the horizontal and vertical planes. The counter-rotating propellers

provide propulsion while compensating for propeller-induced roll.

Sensors have been mounted on the AUV for navigation and environmental

sensing. Navigation sensors include an InertiaMeasurement Unit (IMU), a com-

pass, a GPS receiver, a Doppler Velocity Logger (DVL) for bottom tracking, and
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Figure 8.3: AUV subsystems: 1. Battery pack, 2. Longitudinal Center of Gravity

Trim System, 3. Variable Buoyancy System, 4. Transversal Center of Gravity

System, 5. Thrust Vectoring System with Counter-rotating Propellers.

pressure sensors for depth measurements. Payload sensors include cameras and

sidescan sonar for inspection and surveying and a Conductivity-Temperature-

Depth (CTD) probe for water-column monitoring. For the algal bloom front

tracking application, we use a chlorophyll a-turbidity-phycocyanin fluorometer
for phytoplankton sensing.

8.1.2 Stonefish Simulator
Simulations of mission scenarios are performed using the Stonefish simulator,

see Fig. 8.4. The AUV’s dynamics and sensors are modeled within the simula-

tor. Objects, environmental features, and bathymetry can be imported into the

simulator to createmockups of planned environments.Within Stonefish, percep-

tion and planning software can be validated before deployment on the hardware.

The satellite data for algal blooms is modeled in Stonefish as a lookup table of

chlorophyll a values over a grid encompassing the entire mission environment.
A simulated chlorophyll a sampler interpolates the relevant chlorophyll a mea-
surement from this grid based on the AUV’s position. The software interfaces to

the Stonefish simulator and the real AUV are identical, thus enabling the virtual

validation of a full mission sequence for algal bloom tracking.
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Figure 8.4: Print screen of the Stonefish simulator.

8.1.3 AUV Software
The four software components presented in the center of Fig. 8.1 are further

detailed in this Section. The autonomy software runs on the Robot Operating

System (ROS) [140] environment. The components include a behavior tree for
decision-making and mission execution, a path planner for algal bloom front
tracking, onboard controllers for path following, and a dead-reckoning for nav-
igation.

Behavior Tree

The AUV uses a behavior tree (BT) to ensure safe and transparent mission ex-

ecution. A BT is a reactive decision-making structure that is comprised of se-

quences, fallbacks, actions, and conditions. The main objective of the BT is to

receive a mission plan and delegate actions (e.g., waypoints) to lower-level sys-

tems (e.g., motion planners and controllers) while monitoring the AUV safety.

In an unsafe situation, the BT executes emergency actions to bring the system

back to a safe state. A BT ensures safety and compliance requirements during

mission execution by disallowing unsafe behaviors autonomously. Further in-

formation on designing BTs for underwater robots can be found in [145], [146].
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TheGP path planner presented in Section 7.2.6 is integrated into the BTwith

additional conditions and actions considering satellite data ingestion, chloro-

phyll a sampling, and front tracking. Each algal bloom tracking experiment fol-
lows an operational sequence. Considering a relevant area with algal blooms,

the following workflow is used for sampling and tracking the bloom:

1. An area of interest is specified, and satellite imagery is downloaded.

2. An initial AUVmission plan is set via a user interface based on the initial

algal bloom feature.

3. The AUV is launched, and a GPS fix is acquired.

4. The AUV starts the mission and follows user-defined waypoints to reach

the vicinity of the algal bloom front.

5. The AUV detects the front through its chlorophyll a sensor, and then the
front tracking algorithm is engaged.

6. The path planner generates new waypoints for the AUV to track the front.

The BT for the algal bloom tracking is summarised in Fig. 8.5. A sanity check

on chlorophyll ameasurements is performed in the first sub-tree. Second, safety
conditions are checked. If either fails, the mission is aborted, and emergency ac-

tions are performed. Third, the user-defined waypoint mission is followed if the

system is safe and measurements are available. Fourth, when the AUV reaches

the front, the algal bloom front following action is performed. This is further

detailed below.

Algal Bloom Front Tracking

This action ingests payload data on chlorophyll a concentration and sends live
waypoints to the onboard controllers so that the AUV follows the front. When

the AUV crosses the algae front, the front tracking behavior is enabled, with

a higher priority than following the original waypoints (see Fig. 8.5). A path

planner for front tracking sends new waypoints to the AUV based on real-time

measurements. The AUV samples the front and follows the edge of the bloom.

Once the AUV has exited the front, the vehicle will fall back to the operator’s

plan.
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Figure 8.5: High-level view of the BT used for algal bloom front tracking. Inner

nodes are sequences (arrows) and fallbacks (question marks). Leaf nodes are ac-

tions (rectangle) and conditions (ellipse). All nodes can return Success (green),

Failure (red), and Running (blue).

Onboard Controllers

The front tracking algorithm provides input to the onboard controllers. These

controllers enable the AUV to follow pre-defined waypoints and track the algal

front. Given a set of waypoints, a line-of-sight guidance law minimizes cross-

track error and ensures the vehicle approaches each waypoint at a set heading

and depth. Further information on the waypoint following guidance law can be

found in [147].

The control force vector τC(c) in equation (7.8) is a function of the actuator
input

c =
[
rpm1 rpm2 de dr LCG V BS

]
, (8.1)

where rpm1 and rpm2 represent the propeller speeds, de and dr are vertical
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and horizontal thrust vector angles, and LCG and V BS specify the position
and buoyancy level, respectively.

The low-level feedback control architecture is presented in Fig. 8.6. The

flight control regulates the heading and depth where cascaded Proportional-

Integral-Derivative (PID) controllers are used to command the thrust vector

angles. In the outer loop, the controllers provide a yaw rate and pitch setpoint,

translated to actuator commands to the thrust vectoring system in the inner loop.

These account for couplings between states for flight control. To stabilize the

AUV in pitch and depth, additional PID controllers control the trim (LCG) and

buoyancy (VBS) subsystems. Finally, coupled roll and velocity control is re-

alized using parallel PIDs to command the counter-rotating propellers. These

provide an average propeller rpm to achieve the desired velocity while also pro-

viding a differential rpm between the two propellers that causes the AUV to hold

a roll angle. It is possible to directly command constant rpm values instead of

a desired velocity. The combination of flight and trim controllers enables the

AUV to track the algal front at a specified velocity or propeller rpm but depends

on reliable state feedback.

Dead Reckoning

Underwater navigation is challenging because radio waves attenuate rapidly in

water. This means that GPS-based positioning and navigation are unavailable

underwater, which entails that we need to use inertial and acoustic sensors to

estimate AUV position, orientation, and velocities. Dead reckoning is thus used

to support feedback control through an extended Kalman filter. It fuses acoustic

and inertial measurements collected by the onboard sensors to estimate the ve-

hicle’s position, orientation, and velocity. In particular, the IMU and compass

are used to obtain orientations, angular velocities, and accelerations, the DVL

is used to obtain linear velocities, and the pressure sensor is used to measure the

depth.

8.1.4 User Interface
The user interacts with the software system via the user interface in the upper left

corner of Fig. 8.1. As represented in Fig. 8.7, it consists of a web-based graphical

interface based on Node-RED. It enables the operator to plan the mission on a
world map and monitor the vehicle’s status during the mission. AUV variables

can be tracked, new missions can be run, and measurements can be observed.
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Figure 8.6: The feedback control architecture on SAM with cascaded heading

and depth PIDs for flight control (top), trim stabilization with pitch and buoy-

ancy control (middle), and coupled velocity and roll control with the counter-

rotating propellers (bottom).
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Figure 8.7: Print screen of the user interface based on Node-RED. It contains a
map to visualize the mission, AUV variables, and measurements.

A second graphical user interface allows test engineers to run specific hardware

drivers and controllers to validate low-level controllers.

8.2 Experimental Results in the Baltic Sea
This Section contains experimental results obtained using the front tracking

system. The gradient estimator and motion controller were validated in field

experiments. These experiments took place in the Stockholm archipelago in the

Baltic Sea, near the island of Djurö. The AUV during an experiment is shown in

Fig. 8.8. There were no algal blooms in the area of the experiments, so we scaled

the data in Fig. 7.7 to simulate the chlorophyll a concentration. For these exper-
iments, we applied a low-level controller that guarantees area coverage around

the front. This controller introduces sinusoidal movement around the front.

Fig. 8.9 shows two experiments and two simulations under experimental

conditions. The experiment in Fig. 8.9a was conducted on July 18, 2022. It cor-

responds to about 12 minutes of mission time at an average speed of 0.11m/s.
The experiment in Fig. 8.9b was conducted on August 11, 2022. It corresponds

to about 10 minutes of mission time at an average speed of 0.11m/s. Fig. 8.9c
shows a simulation in which we set the conditions to match the conditions of the

experiments, including the low-level sinusoidal controller. Fig. 8.9d illustrates

simulations with the same experimental conditions but using a linear low-level
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Figure 8.8: The AUV in the water on the mission day, while tethered to the boat.

controller, resulting in tighter front tracking performance.

Let us now analyze the results. In Fig. 8.10, we evaluate the trajectory of

the AUV and the gradient estimator. The trajectories of the AUV in Fig. 8.10a

and Fig. 8.10b appear jittery. This is due to the noise in the GPS signal and

water currents. Water currents drag the AUV to move in a different direction

than the algorithm calculated. These currents are also one of the causes for the

jittery GPS signal as the GPS receiver is a few centimeters above the surface,

and the existence of waves directly influences the signal quality. In Fig. 8.10c

and Fig. 8.10d, we emulate this phenomenon by introducing Gaussian noise

on the GPS receiver. Notice that the AUV oscillates around the front due to

the implemented sinusoidal low-level controller. Thus, the front tracking error

appears large. The scenario with a linear low-level controller in Fig. 8.10d il-

lustrates the performance of the developed motion controller more clearly. The

implications of these sinusoidal and linear low-level controllers are shown in

the chlorophyll a concentration tracking error in Fig. 8.12. In Fig. 8.13, we can
see how the estimated gradient resembles a low-pass filtered version of the true
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(a) Survey on July 18, 2022. (b) Survey on August 11, 2022.

(c) Simulation under experiment conditions

using the sinusoidal low-level controller.

(d) Simulation under experiment conditions

using the linear low-level controller.

Figure 8.9: Two experimental surveys and two simulated scenarios under exper-

imental conditions with AUV trajectory (red) tracking the front (black line) in

the chlorophyll a map (blue-yellow).

gradient. We illustrate the control law and its components in the second zoom-in

in Fig. 8.11. Here, the control law’s seek and follow components match the jit-

tery trajectories. The follow component tends to be parallel to the front, pointing

forward, and the seek component tends towards the front. Analyzing Fig. 8.14,

we can see how the over- and undershoots correspond to times where seek is the

dominating component.

8.3 Summary
In this chapter, we considered the problem of how to use satellite data to im-

prove adaptive sampling missions of an AUV equipped with a chlorophyll a
sensor and how to design a survey in the Baltic Sea to test our approach. After

the development, implementation, and sensitivity analysis, we designed a survey

in the Baltic Sea, near Stockholm, next to the island of Djurö. Similarly to the

simulations, the experiments confirmed that the algorithm and software pack-
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(a) Survey on July 18, 2022. (b) Survey on August 11, 2022.

(c) Simulation under experiment conditions

using the sinusoidal low-level controller.

(d) Simulation under experiment conditions

using the linear low-level controller.

Figure 8.10: Trajectory of the AUV (red) tracking the front (black line), with

arrows representing the true and estimated gradient.

age work as desired in a controlled environment. On the implementation side,

future work would include integrating the algae sensor into an AUV, tuning it

in a controlled setting, and running experiments with the complete system. One

relevant contribution would be to work towards a higher degree of autonomy.

There are several steps to reach a level of robustness sufficient for real-world de-

ployment of higher autonomy. Some are reliable collision avoidance for islands,

boats, and people, robust autonomous dock-in for charging, and a cloud-based

data storage solution.
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(a) Survey on July 18, 2022. (b) Survey on August 11, 2022.

(c) Simulation under experiment conditions

using the sinusoidal low-level controller.

(d) Simulation under experiment conditions

using the linear low-level controller.

Figure 8.11: Trajectory of the AUV (red) tracking the front (black line), with

arrows representing the two components of the control law.
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(a) Survey on July 18, 2022. (b) Survey on August 11, 2022.

(c) Simulation under experiment conditions

using the sinusoidal low-level controller.

(d) Simulation under experiment conditions

using the linear low-level controller.

Figure 8.12: Concentration of chlorophyll a: measurements from the AUV, and

reference value.

(a) Survey on July 18, 2022. (b) Survey on August 11, 2022.

(c) Simulation under experiment conditions

using the sinusoidal low-level controller.

(d) Simulation under experiment conditions

using the linear low-level controller.

Figure 8.13: Gradient of chlorophyll a: AUV estimated gradient, and true gra-

dient.
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(a) Survey on July 18, 2022. (b) Survey on August 11, 2022.

(c) Simulation under experiment conditions

using the sinusoidal low-level controller.

(d) Simulation under experiment conditions

using the linear low-level controller.

Figure 8.14: Control law components: seek and follow.



Chapter 9

Conclusions

In this chapter, we conclude the thesis. In Section 9.1, we summarise and discuss

the presented results, Section 9.2 outlines potential extensions and future work,

and, finally, Section A provides a thorough analysis of the articles cited in the

present thesis.

9.1 Summary
The central question of this thesis was how to optimize ocean feature estima-

tion and tracking using AUVs through adaptive sampling and formation control

techniques. The ocean features we considered were algal blooms in two different

scenarios: a target and a front. The approaches to tracking these ocean features

were multi- and single-agent and considered the available satellite imagery. We

defined estimation and control protocols for each scenario.

In Chapter 3 and Chapter 4, we considered the problem of tracking and

circumnavigating a mobile target using a multi-agent system. The considered

mobile target was an irregular dynamic shape approximated by a circle with a

moving center and varying radius. A satellite image indicated the algal bloom’s

existence and initial location for deploying the multi-agent system. Chapter 3

considered an approach with a multi-agent system containing one far-sighted

leader that can measure the distance to both the boundary and the center of the

target. In this scenario, the leader was an AUV equipped with a UAV. This AUV

used adaptive estimation to calculate the location and size of the mobile target.

Then, the multi-agent system circumnavigated the boundary of the target while

forming a regular polygon. We designed two algorithms: One for the adaptive
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estimation of the target using the UAV’s measurements and another for the con-

trol protocol to be applied by all agents in their navigation. The convergence

of both algorithms to the desired state was proved up to a limit bound. Two

simulated examples were provided to verify the performance of the designed

algorithms. Chapter 4 considered a decentralized approach in which all agents

measured their distance to the boundary of the target. A circle with time-varying

location and size approximated the algal bloom area. The proposed algorithm

comprises a decentralized least squares estimation of the target and a controller

for circumnavigation. We proved the convergence of the agents to the circle and

equally spaced positions around it. Simulation results with data from the SIN-

MOD ocean model were used to illustrate the theoretical results. We extended

this result to the case of non-circular targets. Each agent estimated the local cur-

vature of the target using the measurements of its neighboring agents. At the

same time, the control law accounted for the equal spacing between agents by

driving the agent to be equidistant between its neighbors. We illustrated these

results with two simulated scenarios.

In Chapters 5, 6, and 7, we considered the problem of tracking a mobile

front using a single-agent system. Similarly to the multi-agent target tracking

scenario, satellite imagery aided the front tracking protocol. In contrast to the

multi-agent target tracking scenario, there were no assumptions on the shape of

the algal bloom front. We assumed that any front can be locally approximated

by a curvature and thus represented by a normal vector, the gradient, given that

the front is an isoline of a concentration field. Chapter 5 discussed a local linear

approximation of the gradient. In this chapter, we considered a river front. The

approach was evaluated and tested in simulation using a high-resolution hydro-

dynamic front model. The test plan included 307 test cases covering the most

representative environmental conditions. Space limitations precluded a thor-

ough discussion of the results, but our parameterizable approach and the study

of the conditions for parameter selection will be at the heart of a decision sup-

port system for optimized front surveys. Chapter 6 considered a local quadratic

approximation of the gradient using least squares regression. The agent had a

GPS receiver that reported its position and a chlorophyll a concentration sen-
sor, which measures the local algal concentration.We proposed an experimental

setup composed of satellite data, AUV hardware, software, CMEMS forecasted

data, and an algorithm in which the agent estimates the local algal gradient us-

ing recent past measurements and least squares fitting.We provided a simulation

and analyzed convergence given sensor noise. The agent converged and moved
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along the detected algal bloom front. The algorithm was also implemented on

the LSTS Toolchain using model forecasts of the chlorophyll a concentration in
the Baltic Sea in February 2020 from CMEMS. Chapter 7 considers a Gaussian

process regression of the gradient. Beyond GPS and sensors, we considered us-

ing satellite imagery to improve the survey. Our solution used satellite imagery

and GPs to model chlorophyll a fronts and integrated such model into the front
tracking algorithm. This integration was done using the estimate of the chloro-

phyll a gradient field in the control law. We confirmed the goodness of fit of the
GP model by using scattered data points from a higher resolution satellite data

and were able to reconstruct the chlorophyll a field using the GP model. We
implemented the developed algorithm in the AUV’s software and ran realistic

simulations using the model of our AUV and chlorophyll a sensor model. These
simulations resulted in accurate front tracking with low gradient estimation er-

ror.

Finally, in Chapter 8, we implemented the algorithms developed in Chapter 7

on an AUV and ran a survey in the Baltic Sea, near Stockholm, next to the

island of Djurö. The algorithms were implemented into two software packages

that interface with the remaining AUV software. Similarly to the simulations,

the experiments confirmed that the algorithm and software packages work as

desired in a controlled environment.

In conclusion, this thesis addressed optimizing ocean feature estimation and

tracking using AUVs through adaptive sampling and formation control strate-

gies. Focusing on algal blooms in different scenarios, the research explored

multi-agent and single-agent approaches, incorporating available satellite im-

agery. In the multi-agent target tracking scenario, the adaptive estimation and

control protocols were effective in accurately estimating and circumnavigating

mobile targets for both leader-follower and distributed scenarios. Furthermore,

the front-tracking study using a single agent resulted in three suitable methods:

linear approximation, quadratic optimization, and Gaussian Processes. Com-

prehensive simulations using numerical models confirmed the viability and ac-

curacy of the proposed algorithms. These were further validated by success-

fully implementing the algorithms on an AUV and subsequent field survey. The

achievements presented in this thesis pave the way for future advancements in

AUV-based ocean research and provide valuable insights into the advancement

of environmental monitoring. The development of more autonomous and robust

algorithms promises to revolutionize ocean exploration and contribute signifi-

cantly to society’s efforts in preserving and managing marine ecosystems.
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9.2 Future work
The research presented in this thesis lays the foundation for advancing the field

of ocean feature estimation and tracking through adaptive sampling and forma-

tion control of AUVs. The successful development and implementation of the

proposed methods have revealed several exciting directions for further explo-

ration and enhancement. In this section, we outline the potential future work

that can extend this thesis’s contributions and address some of the limitations

and challenges encountered during the research. The proposed extensions are

enhanced adaptive sampling strategies, heterogeneous multi-agent collabora-

tion, integration of advanced sensing technologies, real-time data handling and

data fusion, long-term AUV autonomy, large-scale field experiments, and envi-

ronmental impact assessment.

In this thesis, we considered several adaptive sampling strategies for sin-

gle and multi-agent systems under various assumptions. This work effectively

improved the efficiency of data collection by guiding the AUVs to informative

regions of the map while maintaining a desired formation or behavior. Further

investigation could result in more advanced adaptive sampling strategies. For

example, by introducing real-time environmental data such as wind, waves, and

ocean currents as modeled in [129]. Embedding these uncertainties into the con-

trol protocol will make the control laws more robust and thus enhance sampling

efficiency in diverse oceanic environments. These improved control methods

would be able to reject disturbances [148] and achieve robust consensus [149].

Considering more challenging oceanic environments with high ocean current

uncertainty and obstacles, it is relevant to investigate uncertainty-aware motion

planners that can estimate online the unknown fluid field uncertainty and aid in

choosing safe and effective actions. For example, by considering Bayes Adaptive

Markov Decision Process for robust decision making [150].

In the multi-agent scenario, we evaluated decentralized and leader-follower

approaches, always focusing on optimizing feature tracking and estimation. Ex-

tending this work tomulti-AUVcollaboration strategieswith high-level decision-

making would further improve the developed protocols to maximize the utiliza-

tion of available resources and reduce overall mission time. For example, in

large or dynamic environments, the exploration-exploitation balance is crucial

to unlock high levels of flexibility, adaptivity, and swarm intelligence. There are

several methods to control the level of exploration and exploitation carried out

by multi-agent systems [151]. Another relevant extension for large or dynamic
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environments is high-level task allocation. There are different task allocation

strategies depending on the application [152]. A fitting option for this decision-

making layer would be to introduce auction-based multi-agent task allocation

with multi-constraint, in which the constraints could be the time window for

task execution, the fuel cost, the availability, and others as developed in [153].

Finally, a very relevant consideration for extension is heterogeneous multi-agent

systems. These systems may be teams consisting of AUVs, USVs, UAVs, glid-

ers, and buoys that may carry different types of sensors with varying sensor

ranges, vehicle sizes, and maneuverability [154]. This variability allows for bet-

ter coverage and smarter decision-making but also introduces more constraints

in the optimal coverage problem, making it a challenging yet compelling exten-

sion.

This thesis considered tracking algal bloom fronts and salinity fronts. We

assumed the available sensors were state-of-the-art chlorophyll a and conduc-
tivity sensors. Indeed, these are the most commonly used sensors for both ap-

plications. However, novel methods for analyzing the underwater environment

require novel control strategies. For example, collecting water samples for later

analysis may be necessary to understand the species of algae bloom. In that case,

the AUVsmust develop adaptive triggering methods to capture water samples at

certain relevant locations [155]. Given the recent development of the Environ-

mental Sample Processor (ESP), it is now possible to analyze the water sample

in situ and, for example, determine the algae bloom species [156]. This advance-

ment will result in the need for more advanced adaptive control strategies.

The primary emphasis of the present thesis has been the development of in-

telligent path planning and adaptive sampling strategies for AUVs to track and

estimate ocean features. Data assimilation emerges as a relevant extension af-

ter verifying the efficacy of the proposed estimation and control protocols for

data collection. Though relevant, it is a broad research field that constitutes “A

central research challenge for the mathematical sciences in the twenty-first cen-

tury,” according to [157]. Therefore, it was not considered in this thesis. How-

ever, an extension that enables integrating diverse datasets obtained fromAUVs,

buoys, satellites, and other sources can enhance the accuracy of ocean feature

estimation and thus facilitate a more holistic approach to ocean exploration and

monitoring. Ocean data assimilation is increasingly recognized as crucial for

the accuracy of real-time oceanic prediction systems [158]. In fact, given the

vast amount of data collected and its variability in space and time, one of the

most interesting extensions would be to predict the state of water parameters
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occurring in marine environments as in [159].

Improving AUV autonomy is crucial for extending the operational time and

covering wider areas. Future work should include developing energy-efficient

navigation and control algorithms. For example, energy can be considered a

cost in an optimal control problem that generates lower-level control laws as

in [160]. Other options include exploring alternative energy sources such as

solar-powered [161], or incorporating autonomous recharging through under-

water docking stations [162].

The algorithms developed in this thesis have been thoroughly tested through

simulations and limited small-scale field experiments. To demonstrate their real-

world effectiveness and robustness, there are some necessary extensions, such

as large-scale field testing of area scanning missions in diverse oceanic condi-

tions as achieved in [163] and smaller-scale field testing of adaptive sampling

strategies as achieved in [164]. For a complete approach to autonomous data col-

lection, there is also the need to research efficient underwater data transmission

and communication protocols and sensors [165].

As integrating AUVs into marine research and exploration becomes more

prevalent and brings several benefits, as previously discussed, evaluating the

potential ecological and geopolitical consequences of AUV deployments be-

comes imperative. Some possible examples of ecological consequences are un-

derwater noise, habitat disruption, and possible interactions with marine fauna.

Some possible examples of geopolitical consequences are maritime security and

surveillance and international regulations. There’s a need to conduct an in-depth

analysis to quantify the extent of these impacts and identify potential mitigation

strategies to minimize any adverse effects. Such an analysis would help us de-

sign missions and controllers with eco-friendly considerations, promoting sus-

tainable practices for future marine research efforts. However, AUVs are a novel

technology, and more research is needed to understand their impact on marine

ecosystems. As of 2023, there aren’t any published articles that could help us

understand this question.

In conclusion, the work presented in this thesis offers significant contri-

butions to optimizing ocean feature estimation and tracking through adaptive

sampling and formation control of autonomous underwater vehicles. The future

work outlined above provides a roadmap for further advancements in this field,

ultimately leading to more efficient, accurate, and environmentally conscious

exploration of the world’s oceans.
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Appendix A

Citation analysis

This Section considers the articles cited in this thesis and, more broadly, the ar-

ticle diversity of the decision and control systems and maritime robotics fields.

This reflection invites dialogue about intersectional equality and bias in our re-

search fields while introducing awareness of these problems. As with any other

STEM field, we can’t think of ourselves as disconnected from the world as our

research directly impacts innovation, development, and society. It is intertwined

with human beings, social life, and future life on earth. That is why it is part of

our job to analyze and understand the impact that our research may have. The

relevance of this reflection also stems from the lack of data and statistics on

diversity in academia and STEM regarding topics such as paper citation and ac-

ceptance. First, we focus on the problem of bias in paper acceptance and double-

blind review as a possible solution, and second, we focus on the problem of bias

in paper citation and offer a reflection on this thesis’s and this field’s diversity.

2020’s president of the IEEE Control Systems Society (CSS), Anuradha

Annaswamy, wrote a message for CSS regarding the pertinence of actively dis-

cussing this topic [166]. In this message, she noted that, across all IEEE mem-

bers, women accounted for 30.3% of Students, 20.9% of Graduate Students,

6.4% of Seniors, and 4.5% of Fellows. She reflected that there is a steady at-

trition of women as their career levels advance from entry-level positions to

leadership roles and that it is observed across engineering, the IEEE, and the

CSS. She also mentioned that the gradients are small despite these percentages

increasing during the past few decades. She considered that the contributing

factors include lack of mentorship and role models, uncomfortable work cul-

tures, evaluative practices, discrimination, and harassment directed at women

or present in the overall environment, often of sexual nature [167]. This is also
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the case in our university, KTH, as the 2022 study indicates that among women

students, 6 percent say they have been subjected to “unwanted sexual attention

in the place of work/study” [168].

Paper acceptance and double-blind review
In this section, we focus on paper acceptance and diversity bias. Different stud-

ies [169] concluded that male researchers exhibited a bias toward citing same-

sex authors more frequently, whereas female researchers cited authors of both

sexes in proportion to the pool of publications available for being referenced.

However, other works [170] have also shown that both sexes tend to evaluate

women less favorably in performance contexts. Several studies consider a pos-

sible solution for this paper acceptance gap is implementing double-blind review

(DBR).

One example is the 2017 study in the journal Behavioral Ecology (BE) be-

fore and after implementing DBR [171]. The data consists of publications be-

tween 1997 and 2005, divided into 1997–2000 (before DBR) and 2002–2005

(after DBR). The results indicate a 7.9% increase in the proportion of women’s

first-authored papers after introducing DBR. This study also considered a con-

trol group of publications in BES, a similar journal that didn’t implement DBR.

No significant difference in gender representation was found across the same

period in BES, which strongly suggests that the change is directly related to the

review policy. Another study in 2016 [172] analyzed the impact of introduc-

ing DBR in EvoLang 11 (Evolution of Language conference) by comparing it

to EvoLang 9 and 10. Similarly, the results indicated a clear difference for fe-

male first-authored papers before and after DBR. Namely, for EvoLang 9 and

10, male-authored articles scored on average 0.04 above their female counter-

parts, while EvoLang 11 male-authored articles scored on average 0.17 below

their female counterparts. Also, a 2013 study [173] investigated how much ci-

tation and publication patterns differ between men and women in international

relations literature. Data from the Teaching, Research, and International Pol-

icy project on peer-reviewed publications between 1980 and 2006 indicates that

women are systematically cited less than men after controlling for various fac-

tors. This research suggests that an article written by a woman and published

in any of the top journals will still receive significantly fewer citations than if

a man had written that same article. This is likely because women tend to cite

themselves less than men, and men (whomake up a disproportionate share of IR
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scholars) tend to cite men more than women. A 2020 article [174] considered

gender bias in exam grading in Economics at Stockholm University in Swe-

den. The data collected was from the macroeconomics exam between 2008 and

2014. The results indicate that being graded by an examiner of the same gen-

der increased the exam score by 0.087 standard deviations before DBR. They

also suggested that, when separating the effects by grader’s gender, both groups

of graders favor male students, although male graders favor male students to a

larger extent than female graders. In all cases, after DBR, the effect was close

to zero.

Paper citation and thesis statistics
This subsection evaluates the diversity of the publications in the present thesis,

considering estimated gender and ethnicity [175]. This thesis contains 163 cita-

tions, excluding the citations referring to the present section of Citation Analy-

sis. Out of these 163 citations, we considered 148 for analysis. The remaining 15

corresponded to online articles, websites, or others in which the authors were

not clearly identified. These 148 citations correspond to mostly academic ar-

ticles and books, with few exceptions. Each of these citations includes one or

more authors. Since most of them are articles, we focus on the first author, which

tends to be the article’s main author, and on the last author, which tends to be

the supervisor or group/lab director. In cases where there’s only one author, we

consider them both the first and last author. In cases with more than two authors,

we disregard the middle ones.

From each publication, we extract the first and last names of the first and

last author. For each of these names, we estimate the gender and ethnicity us-

ing the ethnicolr package [175] and the CleanBib repository [176]. Afterward,

we manually checked for inconsistencies and adapted according to the avail-

able knowledge. For example, the name Joana was considered female with 99%

certainty. However, the ethnicity wasn’t as easy to establish, with the following

probabilities: 20% white, 0% asian, 88% hispanic, 2% black. Therefore, given

the available information, I manually adjusted these probabilities to fit reality

better by searching each author. Having said that, the results in this section in-

dicate trends but always correspond to a probability.

Fig. A.1 indicates the results for the gender analysis of this thesis citations.

The first observation confirms the expected from the previous field statistics;

men dominate the publications with man-first authors at 84% and man-last au-
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Figure A.1: Analysis of gender diversity in this thesis citations. WM: Woman

first author, man last author; WW:Woman first author, woman last author; MW:

Man first author, woman last author; MM: Man first author, man last author.

thors at 91%. The second observation is that there’s a much stronger incidence

of female first authors than last authors. This confirms the previous statistic that

women tend to be at higher percentages in entry-level positions, in contrast to

leadership positions.

Fig. A.2 indicates the results for the ethnicity and gender analysis of this

thesis citations. As in the previous figure, the gender distribution is visible, with

men covering most cited publications. Beyond that, there is a clear trend for

white men, with white man-first authors covering 54% of all first authors and

white man-last authors covering 61% of all last authors.

As previously mentioned, IEEE senior members are 93.6% men, and IEEE

fellows are 95.5% men. With this data, we can extrapolate that IEEE last au-

thors would be between 93.6% and 95.5% men. Without data on how much

each person publishes, the conclusions are limited. We can only suggest that the

values obtained for the present thesis (man last authors at 91%) align with the

field’s diversity. These results would be especially relevant if compared to the

field’s standards and historical progress. However, as mentioned at the begin-

ning of this section, such data and corresponding statistics do not exist yet as it

is common practice in the field. We suggest following Ph.D. thesis to consider
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Figure A.2: Analysis of ethnicity and gender diversity in this thesis citations.

white_m stands for estimated white man.

running a similar analysis for self-reflection and introducing the possibility of

benchmark comparisons in the future.

These results indicate that the papers cited in this thesis are predominantly

fromwhite male authors, particularly when considering the last author. Together

with the field’s statistics, this suggests that the members of our research commu-

nity may not represent our diverse society very accurately. This limited diversity

results in consequences for the research itself, as some research questions may

remain unanswered, and novel research paths may remain unexplored. We won-

der what future research within control and robotics could becomewhen consid-

ering more interpretations, priorities, biases, and topics when writing research

papers, defining research proposals, or evaluating research impact.

In conclusion, this section has provided a practical analysis of paper ac-

ceptance and its commonly applied solution of double-blind review, as well as

valuable data on paper citation that prompted critical self-reflection on the refer-

ences used in this thesis. By acknowledging and addressing biases in the paper

acceptance and citation, the members of our field can contribute to a more in-
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clusive and impactful research landscape. Ultimately, a more diverse represen-

tation of authors and perspectives will lead to a richer and more well-rounded

exploration of the field, fostering innovation and progress.



Bibliography

[1] SMHI satellite data on algae, https://www.smhi.se/data/oc
eanografi/algsituationen.

[2] I. M. Belkin, P. C. Cornillon, and K. Sherman, “Fronts in large marine

ecosystems,” Progress in Oceanography, vol. 81, no. 1, pp. 223–236,
2009.

[3] C. C. Chapman, M.-A. Lea, A. Meyer, J.-B. Sallée, and M. Hindell,

“Defining southern ocean fronts and their influence on biological and

physical processes in a changing climate,”Nature Climate Change, vol. 10,
no. 3, pp. 209–219, 2020.

[4] National Oceanic and Atmospheric Administration, What is a harmful
algal bloom? https://www.noaa.gov/what-is-harmful-
algal-bloom.

[5] S. E. Shumway, J. Burkholder, and S. L.Morton,Harmful Algal Blooms:
A Compendium Desk Reference. John Wiley & Sons, 2018.

[6] M. L. Wells, V. L. Trainer, T. J. Smayda, B. S. Karlson, C. G. Trick,

R. M. Kudela, A. Ishikawa, S. Bernard, A. Wulff, D. M. Anderson, and

W. P. Cochlan, “Harmful algal blooms and climate change: Learning

from the past and present to forecast the future,”Harmful Algae, vol. 49,
pp. 68–93, 2015.

[7] W. Munk, Testimony to the U.S. commission on ocean policy. http:
//govinfo.library.unt.edu/oceancommission/meeti
ngs/apr18_19_02/munk_statement.pdf, 2002.

[8] P. Wassmann, D. Slagstad, C. W. Riser, and M. Reigstad, “Modelling

the ecosystem dynamics of the Barents Sea including the marginal ice

zone: II. Carbon flux and interannual variability,” Journal of Marine
Systems, vol. 59, no. 1, pp. 1–24, 2006.

157



158 Bibliography

[9] P. J. S. Franks, “Recent advances inmodelling of harmful algal blooms,”

in Global Ecology and Oceanography of Harmful Algal Blooms, P. M.
Glibert, E. Berdalet, M. A. Burford, G. C. Pitcher, and M. Zhou, Eds.

Springer International Publishing, 2018, pp. 359–377.

[10] SMHI algal bloom report from satellite, https://www.smhi.se
/kunskapsbanken/oceanografi/algblomning-1.1734,
2011.

[11] H. Loisel, V. Vantrepotte, C. Jamet, and D. N. Dat, “Challenges and

new advances in ocean color remote sensing of coastal waters,” Topics
in Oceanography, pp. 1–38, 2013.

[12] M. Johansen, Algal report number 7, 2019, https://www.smhi.s
e/publikationer/publikationer/algrapporter/algr
apport-nummer-7-2019-1.150075, 2019.

[13] R. Ringbäck, “Multi-agent autonomous target tracking using distance-

based formations,” M.S. thesis, KTH, Automatic Control, 2017.

[14] I. C. Azevedo, A. A. Bordalo, and P. M. Duarte, “Influence of river dis-

charge patterns on the hydrodynamics and potential contaminant disper-

sion in the Douro estuary (Portugal),” Water Research, vol. 44, no. 10,
pp. 3133–3146, 2010.

[15] R. Mendes, N. Vaz, D. Fernández-Nóvoa, J. Da Silva, M. Decastro, M.

Gómez-Gesteira, and J. M. Dias, “Observation of a turbid plume us-

ing MODIS imagery: The case of Douro estuary (Portugal),” Remote
Sensing of Environment, vol. 154, pp. 127–138, 2014.

[16] J. Pinto, R. Mendes, J. C. da Silva, J. M. Dias, and J. B. de Sousa,

“Multiple autonomous vehicles applied to plume detection and track-

ing,” IEEE OCEANS, pp. 1–6, 2018.
[17] J. Hwang, N. Bose, and S. Fan, “AUV adaptive sampling methods: A

review,” Applied Sciences, vol. 9, no. 15, 2019.
[18] Infographic: Ocean sampling technologies, https://www.dfo-m

po.gc.ca/about-notre-sujet/publications/infogr
aphics-infographies/soto-rceo-national/2020/fi
gure-12-sampling-echantillonnage-eng.html.



Bibliography 159

[19] B. A. Kaiser, M. Hoeberechts, K. H. Maxwell, L. Eerkes-Medrano, N.

Hilmi, A. Safa, C. Horbel, S. K. Juniper, M. Roughan, N. T. Lowen,

K. Short, and D. Paruru, “The importance of connected ocean monitor-

ing knowledge systems and communities,” Frontiers in Marine Science,
vol. 6, 2019.

[20] M. Ashphaq, P. K. Srivastava, and D. Mitra, “Review of near-shore

satellite derived bathymetry: Classification and account of five decades

of coastal bathymetry research,” Journal of Ocean Engineering and Sci-
ence, vol. 6, no. 4, pp. 340–359, 2021.

[21] A. K. Liu, C. Y. Peng, and S.-S. Chang, “Wavelet analysis of satellite im-

ages for coastal watch,” IEEE Journal of Oceanic Engineering, vol. 22,
no. 1, pp. 9–17, 1997.

[22] A. Purser, Y. Marcon, S. Dreutter, U. Hoge, B. Sablotny, L. Hehemann,

J. Lemburg, B. Dorschel, H. Biebow, and A. Boetius, “Ocean floor ob-

servation and bathymetry system (ofobs): A new towed camera/sonar

system for deep-sea habitat surveys,” IEEE Journal of Oceanic Engi-
neering, vol. 44, no. 1, pp. 87–99, 2018.

[23] H. Sun, D. C. Hendry, M. A. Player, and J. Watson, “In situ underwater

electronic holographic camera for studies of plankton,” IEEE Journal
of Oceanic Engineering, vol. 32, no. 2, pp. 373–382, 2007.

[24] R. N. Smith and V. T. Huynh, “Controlling buoyancy-driven profiling

floats for applications in ocean observation,” IEEE Journal of Oceanic
Engineering, vol. 39, no. 3, pp. 571–586, 2013.

[25] D. Roemmich, G. C. Johnson, S. Riser, R. Davis, J. Gilson,W.B.Owens,

S. L. Garzoli, C. Schmid, and M. Ignaszewski, “The argo program: Ob-

serving the global ocean with profiling floats,” Oceanography, vol. 22,
no. 2, pp. 34–43, 2009.

[26] J. Sherman, R. E. Davis,W. Owens, and J. Valdes, “The autonomous un-

derwater glider "spray",” IEEE Journal of Oceanic Engineering, vol. 26,
no. 4, pp. 437–446, 2001.

[27] D. C. Webb, P. J. Simonetti, and C. P. Jones, “Slocum: An underwater

glider propelled by environmental energy,” IEEE Journal of Oceanic
Engineering, vol. 26, no. 4, pp. 447–452, 2001.



160 Bibliography

[28] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L.

Sabin, J. W. Ballard, and A. M. Chiodi, “Seaglider: A long-range au-

tonomous underwater vehicle for oceanographic research,” IEEE Jour-
nal of Oceanic Engineering, vol. 26, no. 4, pp. 424–436, 2001.

[29] N. E. Leonard and J. G. Graver, “Model-based feedback control of au-

tonomous underwater gliders,” IEEE Journal of Oceanic Engineering,
vol. 26, no. 4, pp. 633–645, 2001.

[30] F. P. Chavez, J. T. Pennington, R. Herlien, H. Jannasch, G. Thurmond,

and G. E. Friederich, “Moorings and drifters for real-time interdisci-

plinary oceanography,” Journal of Atmospheric and Oceanic Technol-
ogy, vol. 14, no. 5, pp. 1199–1211, 1997.

[31] J. S. Willcox, J. G. Bellingham, Y. Zhang, and A. B. Baggeroer, “Per-

formance metrics for oceanographic surveys with autonomous under-

water vehicles,” IEEE Journal of Oceanic Engineering, vol. 26, no. 4,
pp. 711–725, 2001.

[32] J. Das, F. Py, T.Maughan, T. O’reilly,M.Messié, J. Ryan, G. S. Sukhatme,

and K. Rajan, “Coordinated sampling of dynamic oceanographic fea-

tures with underwater vehicles and drifters,” The International Journal
of Robotics Research, vol. 31, no. 5, pp. 626–646, 2012.

[33] Ö. Özkahraman and P. Ögren, “Efficient navigation aware seabed cov-

erage using AUVs,” IEEE International Symposium on Safety, Security,
and Rescue Robotics, pp. 63–70, 2021.

[34] P. Yao, L. Qiu, J. Qi, and R. Yang, “AUV path planning for cover-

age search of static target in ocean environment,” Ocean Engineering,
vol. 241, no. 110050, 2021.

[35] A. Sivertsen, S. Solbø, R. Storvold, A. Tøllefsen, and K. S. Johansen,

“Automatic mapping of sea ice using unmanned aircrafts,” ReCAMP
Flagship Workshop Book of Abstracts, pp. 1–30, 2016.

[36] J. B. de Sousa and F. L. Pereira, “On the future of ocean observation,”

in O mar no futuro de Portugal: Ciência e visão estratégica, Lisboa:
Centro de estudos estratégicos do Atlântico, 2014.

[37] LSTS website, https://www.lsts.pt.

[38] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent forma-

tion control,” Automatica, vol. 53, pp. 424–440, 2015.



Bibliography 161

[39] A. Lucieer, D. Turner, D. H. King, and S. A. Robinson, “Using an un-

manned aerial vehicle (UAV) to capture micro-topography of antarctic

moss beds,” International Journal of Applied Earth Observation and
Geoinformation, vol. 27, A:53 – 62, 2014.

[40] A. Zolich, D. Palma, K. Kansanen, K. Fjørtoft, J. Sousa, K. H. Johans-

son, Y. Jiang, H. Dong, and T. A. Johansen, “Survey on communication

and networks for autonomous marine systems,” Journal of Intelligent &
Robotic Systems, 2018.

[41] R. M. Murray, “Recent research in cooperative control of multivehi-

cle systems,” Journal of Dynamic Systems, Measurement, and Control,
vol. 129, no. 5, pp. 571–583, 2007.

[42] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress

in the study of distributedmulti-agent coordination,” IEEE Transactions
on Industrial Informatics, vol. 9, no. 1, pp. 427–438, 2013.

[43] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”

IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 947–
951, 2001.

[44] I. Shames, B. Fidan, and B. D. O. Anderson, “Close target reconnais-

sance using autonomous UAV formations,” IEEE Conference on Deci-
sion and Control, pp. 1729–1734, 2008.

[45] D. V. Dimarogonas and K. H. Johansson, “On the stability of distance-

based formation control,” IEEE Conference on Decision and Control,
pp. 1200–1205, 2008.

[46] M. Cao, A. S. Morse, C. Yu, B. D. O. Anderson, and S. Dasgupta, “Con-

trolling a triangular formation of mobile autonomous agents,” IEEE
Conference on Decision and Control, pp. 3603–3608, 2007.

[47] M. Cao, A. S. Morse, C. Yu, B. Anderson, and S. Dasgupta, “Main-

taining a directed, triangular formation of mobile autonomous agents,”

Communications in Information and Systems, vol. 11, no. 1, 2011.
[48] Z. Sun, Cooperative Coordination and Formation Control for Multi-

agent Systems. Springer International Publishing, 2018.
[49] M.AniHsieh, V. Kumar, and L. Chaimowicz, “Decentralized controllers

for shape generationwith robotic swarms,”Departmental Papers (MEAM),
vol. 26, 2008.



162 Bibliography

[50] G. Li, D. St-Onge, C. Pinciroli, A. Gasparri, E. Garone, and G. Bel-

trame, “Decentralized progressive shape formation with robot swarms,”

Autonomous Robots, pp. 1–17, 2018.
[51] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni,

and R. E. Davis, “Collective motion, sensor networks, and ocean sam-

pling,” Proceedings of the IEEE, vol. 95, no. 1, pp. 48–74, 2007.
[52] G. Gu, P. R. Chandler, C. J. Schumacher, A. Sparks, and M. Pachter,

“Optimal cooperative sensing using a team of UAVs,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 42, no. 4, pp. 1446–
1458, 2006.

[53] A. S. Matveev, H. Teimoori, and A. V. Savkin, “Range-only measure-

ments based target following for wheeled mobile robots,” Automatica,
vol. 47, pp. 177–184, 2011.

[54] I. Shames, S. Dasgupta, B. Fidan, and B. D. Anderson, “Circumnaviga-

tion using distance measurements under slow drift,” IEEE Transactions
on Automatic Control, vol. 57, no. 4, pp. 889–903, 2012.

[55] A. S. Matveev and K. S. Ovchinnikov, “Distributed communication-

free control of multiple robots for circumnavigation of a speedy un-

predictably maneuvering target,” IEEE European Control Conference
(ECC), pp. 1797–1802, 2018.

[56] R. Zheng and D. Sun, “Circumnavigation by a mobile robot using bear-

ing measurements,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4643–4648, 2014.

[57] M. Deghat, I. Shames, B. D. O. Anderson, and C. Yu, “Target localiza-

tion and circumnavigation using bearing measurements in 2D,” IEEE
Conference on Decision and Control, pp. 334–339, 2010.

[58] M. Deghat, E. Davis, T. See, I. Shames, B. D. O. Anderson, and C. Yu,

“Target localization and circumnavigation by a non-holonomic robot,”

IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1227–1232, 2012.

[59] M. Deghat, L. Xia, B. D. O. Anderson, andY. Hong, “Multi-target local-

ization and circumnavigation by a single agent using bearing measure-

ments,” International Journal of Robust and Nonlinear Control, vol. 25,
no. 14, pp. 2362–2374, 2015.



Bibliography 163

[60] A. Boccia, A. Adaldo, D. V. Dimarogonas, M. di Bernardo, and K. H.

Johansson, “Tracking a mobile target by multi-robot circumnavigation

using bearing measurements,” IEEE Conference on Decision and Con-
trol, pp. 1076–1081, 2017.

[61] J. O. Swartling, I. Shames, K. H. Johansson, and D. V. Dimarogonas,

“Collective circumnavigation,”Unmanned Systems, vol. 2, no. 3, pp. 219–
229, 2014.

[62] M. Fahad, N. Saul, Y. Guo, and B. Bingham, “Robotic simulation of

dynamic plume tracking by unmanned surface vessels,” IEEE Interna-
tional Conference on Robotics and Automation, pp. 2654–2659, 2015.

[63] S. Li, Y. Guo, and B. Bingham, “Multi-robot cooperative control for

monitoring and tracking dynamic plumes,” IEEE International Confer-
ence on Robotics and Automation, pp. 67–73, 2014.

[64] A. Franchi, P. Stegagno, and G. Oriolo, “Decentralized multi-robot en-

circlement of a 3D target with guaranteed collision avoidance,” Au-
tonomous Robots, vol. 40, 2015.

[65] S. Bhat and I. Stenius, “Hydrobatics: A review of trends, challenges

and opportunities for efficient and agile underactuated AUVs,” IEEE
OCEANS, pp. 1–8, 2018.

[66] M. Freilich, “Forecasting where ocean life thrives: Scientists focus on

seams in the ocean called ’fronts’,” SIAM Journal on Control and Op-
timization, vol. 53, no. 2, 2018.

[67] M.Carlowicz, Something fishy in the atlantic night–south atlantic ocean,
2013. [Online]. Available: https://earthobservatory.nasa
.gov/features/Malvinas.

[68] NASA Ocean Color Group. [Online]. Available: https://oceanco
lor.gsfc.nasa.gov/.

[69] Y.-H. Ahn, P. Shanmugam, J.-H. Ryu, and J.-C. Jeong, “Satellite de-

tection of harmful algal bloom occurrences in korean waters,” Harmful
Algae, vol. 5, no. 2, pp. 213–231, 2006.

[70] I. Belkin, J. Sousa, J. Pinto, R. Mendes, and F. López-Castejón, “A new

front-tracking algorithm formarine robots,” IEEE/OES Autonomous Un-
derwater Vehicle Workshop, pp. 1–3, 2018.



164 Bibliography

[71] Y. Zhang, C. Rueda, B. Kieft, J. P. Ryan, C. Wahl, T. C. O’Reilly, T.

Maughan, and F. P. Chavez, “Autonomous tracking of an oceanic ther-

mal front by a wave glider,” Journal of Field Robotics, vol. 36, no. 5,
pp. 940–954, 2019.

[72] W. Li, J. A. Farrell, S. Pang, and R.M.Arrieta, “Moth-inspired chemical

plume tracing on an autonomous underwater vehicle,” IEEE Transac-
tions on Robotics, vol. 22, no. 2, pp. 292–307, 2006.

[73] J. Hwang, N. Bose, H. Nguyen, and G. Williams, “AUV adaptive sam-

pling to delineate subsurface oil plumes,” IEEE/OES Autonomous Un-
derwater Vehicles Symposium, pp. 1–2, 2020.

[74] Y. Zhang, B. Kieft, B. W. Hobson, J. P. Ryan, B. Barone, C. M. Preston,

B. Roman, B.-Y. Raanan, R. Marin III, T. C. O’Reilly, C. A. Rueda, D.

Pargett, K.M.Yamahara, S. Poulos, A. Romano, G. Foreman, H. Ramm,

S. T. Wilson, E. F. DeLong, D. M. Karl, J. M. Birch, J. G. Bellingham,

and C. A. Scholin, “Autonomous tracking and sampling of the deep

chlorophyll maximum layer in an open-ocean eddy by a long-range au-

tonomous underwater vehicle,” IEEE Journal of Oceanic Engineering,
vol. 45, no. 4, pp. 1308–1321, 2020.

[75] A. Branch, M. M. Flexas, B. Claus, A. F. Thompson, Y. Zhang, E. B.

Clark, S. Chien, D.M. Fratantoni, J. C. Kinsey, B. Hobson, B. Kieft, and

F. P. Chavez, “Front delineation and tracking with multiple underwater

vehicles,” Journal of Field Robotics, vol. 36, no. 3, pp. 568–586, 2019.
[76] Y. Zhang, M. Godin, J. Bellingham, and J. Ryan, “Using an autonomous

underwater vehicle to track a coastal upwelling front,” IEEE Journal of
Oceanic Engineering, vol. 37, pp. 338–347, 2012.

[77] R. N. Smith, P. Cooksey, F. Py, G. S. Sukhatme, andK. Rajan, “Adaptive

path planning for tracking ocean fronts with an autonomous underwa-

ter vehicle,” 14th International Symposium on Experimental Robotics,
pp. 761–775, 2016.

[78] Y. Zhang, J. G. Bellingham, J. P. Ryan, B. Kieft, and M. J. Stanway,

“Autonomous four-dimensional mapping and tracking of a coastal up-

welling front by an autonomous underwater vehicle,” Journal of Field
Robotics, vol. 33, no. 1, pp. 67–81, 2016.



Bibliography 165

[79] D. Kularatne, R. N. Smith, and M. A. Hsieh, “Zig-zag wanderer: To-

wards adaptive tracking of time-varying coherent structures in the ocean,”

IEEE International Conference on Robotics and Automation, pp. 3253–
3258, 2015.

[80] J. Hwang, N. Bose, H. D. Nguyen, and G. Williams, “Oil plume map-

ping: Adaptive tracking and adaptive sampling from an autonomous un-

derwater vehicle,” IEEE Access, vol. 8, pp. 198 021–198 034, 2020.
[81] Y. Zhang, R. S. McEwen, J. P. Ryan, J. G. Bellingham, H. Thomas,

C. H. Thompson, and E. Rienecker, “A peak-capture algorithm used on

an autonomous underwater vehicle in the 2010 gulf of mexico oil spill

response scientific survey,” Journal of Field Robotics, vol. 28, no. 4,
pp. 484–496, 2011.

[82] I. Belkin, J. B. D. Sousa, J. Pinto, R. Mendes, and F. Lopez-Castejon,

“A new front-tracking algorithm for marine robots,” IEEE/OES Au-
tonomous Underwater Vehicle Workshop, 2018.

[83] Y. Zhang, M. A. Godin, J. G. Bellingham, and J. P. Ryan, “Using an au-

tonomous underwater vehicle to track a coastal upwelling front,” IEEE
Journal of Oceanic Engineering, vol. 37, no. 3, pp. 338–347, 2012.

[84] C. J. Cannell, A. S. Gadre, and D. J. Stilwell, “Boundary tracking and

rapid mapping of a thermal plume using an autonomous vehicle,” IEEE
OCEANS, pp. 1–6, 2006.

[85] C. J. Cannell and D. J. Stilwell, “A comparison of two approaches for

adaptive sampling of environmental processes using autonomous un-

derwater vehicles,” IEEE OCEANS, pp. 1514–1521, 2005.
[86] J. A. Farrell, S. Pang, and W. Li, “Chemical plume tracing via an au-

tonomous underwater vehicle,” IEEE Journal of Oceanic Engineering,
vol. 30, no. 2, pp. 428–442, 2005.

[87] J. Harvey, J. Ryan, R. III, C. Preston, N. Alvarado, C. Scholin, and R.

Vrijenhoek, “Robotic sampling, in situ monitoring and molecular detec-

tion of marine zooplankton,” Journal of Experimental Marine Biology
and Ecology, vol. 413, pp. 1–11, 2012.

[88] S. Petillo, H. Schmidt, P. Lermusiaux, D. Yoerger, and A. Balasuriya,

“Autonomous & adaptive oceanographic front tracking on board au-

tonomous underwater vehicles,” IEEE OCEANS, pp. 1–10, 2015.



166 Bibliography

[89] H. Feng, J. Yu, Y. Huang, J. Qiao, Z. Wang, Z. Xie, and K. Liu, “Adap-

tive coverage sampling of thermocline with an autonomous underwater

vehicle,” Ocean Engineering, vol. 233, no. 109151, 2021.
[90] P. Ögren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mo-

bile sensor networks: Adaptive gradient climbing in a distributed en-

vironment,” IEEE Transactions on Automatic Control, vol. 49, no. 8,
pp. 1292–1302, 2004.

[91] E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer, and

D. M. Fratantoni, “Multi-AUV control and adaptive sampling in Mon-

tereyBay,” IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 935–
948, 2006.

[92] T. O. Fossum, P. Norgren, I. Fer, F. Nilsen, Z. C. Koenig, and M. Lud-

vigsen, “Adaptive sampling of surface fronts in the arctic using an au-

tonomous underwater vehicle,” IEEE Journal of Oceanic Engineering,
vol. 46, no. 4, pp. 1155–1164, 2021.

[93] N.K.Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, andN.M. Patrikalakis,

“Path planning of autonomous underwater vehicles for adaptive sam-

pling usingmixed integer linear programming,” IEEE Journal of Oceanic
Engineering, vol. 33, no. 4, pp. 522–537, 2008.

[94] A. A. Bennett and J. J. Leonard, “A behavior-based approach to adap-

tive feature detection and following with autonomous underwater vehi-

cles,” IEEE Journal of Oceanic Engineering, vol. 25, no. 2, pp. 213–
226, 2000.

[95] S. McCammon, G. Marcon dos Santos, M. Frantz, T. P. Welch, G. Best,

R. K. Shearman, J. D. Nash, J. A. Barth, J. A. Adams, andG.A.Hollinger,

“Ocean front detection and tracking using a team of heterogeneous ma-

rine vehicles,” Journal of Field Robotics, vol. 38, no. 6, pp. 854–881,
2021.

[96] C. Mellucci, P. P. Menon, C. Edwards, and P. Challenor, “Predictive

oceanic features trackingwith formations of autonomous vehicles,” IEEE
Conference on Decision and Control, pp. 6446–6451, 2016.

[97] M. Mateus, R. Canelas, L. Pinto, and N. Vaz, “When tragedy strikes:

Potential contributions from ocean observation to search and rescue op-

erations after drowning accidents,” Frontiers in Marine Science, vol. 7,
2020.



Bibliography 167

[98] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and G. S.

Sukhatme, “Planning and implementing trajectories for autonomous un-

derwater vehicles to track evolving ocean processes based on predic-

tions from a regional oceanmodel,” The International Journal of Robotics
Research, vol. 29, no. 12, pp. 1475–1497, 2010.

[99] J. Das, F. Py, J. B. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A.

Caron, K. Rajan, andG. S. Sukhatme, “Data-driven robotic sampling for

marine ecosystem monitoring,” The International Journal of Robotics
Research, vol. 34, no. 12, pp. 1435–1452, 2015.

[100] T. O. Fossum, J. Eidsvik, I. Ellingsen, M. O. Alver, G. M. Fragoso,

G. Johnsen, R. Mendes, M. Ludvigsen, and K. Rajan, “Information-

driven robotic sampling in the coastal ocean,” Journal of Field Robotics,
vol. 35, no. 7, pp. 1101–1121, 2018.

[101] T. D. Dickey, “Emerging ocean observations for interdisciplinary data

assimilation systems,” Journal of Marine Systems, vol. 40, pp. 5–48,
2003.

[102] O. Schofield, T. Bergmann, P. Bissett, J. F. Grassle, D. B. Haidvogel,

J. Kohut, M. Moline, and S. M. Glenn, “The long-term ecosystem ob-

servatory: An integrated coastal observatory,” IEEE Journal of Oceanic
Engineering, vol. 27, no. 2, pp. 146–154, 2002.

[103] T. O. Fossum, G. M. Fragoso, E. J. Davies, J. E. Ullgren, R. Mendes,

G. Johnsen, I. Ellingsen, J. Eidsvik, M. Ludvigsen, and K. Rajan, “To-

ward adaptive robotic sampling of phytoplankton in the coastal ocean,”

Science Robotics, vol. 4, no. 27, 2019.
[104] K. D. Heaney, G. Gawarkiewicz, T. F. Duda, and P. F. Lermusiaux,

“Nonlinear optimization of autonomous undersea vehicle sampling strate-

gies for oceanographic data-assimilation,” Journal of Field Robotics,
vol. 24, no. 6, pp. 437–448, 2007.

[105] D. Chang, C. R. Edwards, F. Zhang, and J. Sun, “A data assimilation

framework for data-driven flow models enabled by motion tomogra-

phy,” International Journal of Intelligent Robotics and Applications,
vol. 3, no. 2, pp. 158–177, 2019.

[106] B. Gips, “Texture-based seafloor characterization using Gaussian pro-

cess classification,” IEEE Journal of Oceanic Engineering, vol. 47, no. 4,
pp. 1058–1068, 2022.



168 Bibliography

[107] J. P. Ryan, A. M. Fischer, R. M. Kudela, M. A. McManus, J. S. Myers,

J. D. Paduan, C. M. Ruhsam, C. B. Woodson, and Y. Zhang, “Recurrent

frontal slicks of a coastal ocean upwelling shadow,” Journal of Geo-
physical Research: Oceans, vol. 115, no. C12, 2010.

[108] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S.

Sukhatme, “Persistent oceanmonitoringwith underwater gliders: Adapt-

ing sampling resolution,” Journal of Field Robotics, vol. 28, no. 5, pp. 714–
741, 2011.

[109] R. Ferrari, “A frontal challenge for climate models,” Science, vol. 332,
no. 6027, pp. 316–317, 2011.

[110] R. Millet, F. Plumet, and J.-C. Dern, “Autonomous surface vehicle for

oceanographic survey,” International Autonomous Surface Ship Sympo-
sium, 2008.

[111] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, “Unmanned surface vehicles: An

overview of developments and challenges,” Annual Reviews in Control,
vol. 41, pp. 71–93, 2016.

[112] B. D. O. Anderson, “Exponential stability of linear equations arising

in adaptive identification,” IEEE Transactions on Automatic Control,
vol. 22, no. 1, pp. 83–88, 1977.

[113] N. Shimkin and A. Feuer, “Persistency of excitation in continuous-time

systems,” Systems & Control Letters, vol. 9, no. 3, pp. 225–233, 1987.
[114] L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applica-

tions. A Wiley-Interscience publication, 2000.
[115] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus

protocols with applications to quantized communication and actuation,”

IEEE Transactions on Control of Network Systems, 2018.
[116] K. J. Åström, “Adaptive control,” inMathematical System Theory: The

Influence of R. E. Kalman, Springer Berlin Heidelberg, 1991, pp. 437–
450.

[117] SINMOD simulation data, https://www.sintef.no/en/ocea
n/initiatives/sinmod/.

[118] J. Jurisa, Columbia river plume. [Online]. Available: https://joej
urisa.wordpress.com/research/columbia-river-pl
ume/.



Bibliography 169

[119] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, and J. Sousa,

“The LSTS toolchain for networked vehicle systems,” IEEE OCEANS,
2013.

[120] R. Martins, P. S. Dias, E. R. Marques, J. Pinto, J. B. Sousa, and F. L.

Pereira, “IMC: A communication protocol for networked vehicles and

sensors,” IEEE OCEANS, pp. 1–6, 2009.
[121] F. L. Pereira, J Pinto, J. Sousa, R. Gomes, G. M. Gonçalves, and P. S.

Dias, “Mission planning and specification in the Neptus framework,”

IEEE International Conference on Robotics and Automation, pp. 3220–
3225, 2006.

[122] M. C. Sousa, A. S. Ribeiro, M. Des, R. Mendes, I. Alvarez, M. Gomez-

Gesteira, and J. M. Dias, “Integrated high-resolution numerical model

for the NW iberian peninsula coast and main estuarine systems,” Jour-
nal of Coastal Research, pp. 66–70, 2018.

[123] DUNE unified navigation environment, https://lsts.fe.up.p
t/software/64.

[124] Communications protocol associated with the LSTS software frame-
work, https://www.lsts.pt/docs/imc/master/.

[125] NEPTUS command and control software developed by LSTS, https:
//lsts.fe.up.pt/toolchain/neptus.

[126] Copernicus marine service, https://marine.copernicus.eu
/about-us/about-eu-copernicus/.

[127] Swedish maritime robotics centre, https://smarc.se.

[128] YSI sensors, https://www.ysi.com/pro/talpc.

[129] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, Ltd, 2011.

[130] N. Wasmund, “Harmful algal blooms in coastal waters of the south-

eastern Baltic sea,” in Baltic Coastal Ecosystems: Structure, Function
and Coastal Zone Management. Springer BerlinHeidelberg, 2002, pp. 93–
116.

[131] E.U. Copernicus Marine Service Information (CMEMS), “Baltic sea

biogeochemistry analysis and forecast,” [Online]. Available: https:
//resources.marine.copernicus.eu/product-detai
l/BALTICSEA_ANALYSISFORECAST_BGC_003_007.



170 Bibliography

[132] Ä. Bilaletdin, H. Kaipainen, and T. Frisk, “Dynamic nutrient modelling

of a large river basin in Finland,”WIT Transactions on Ecology and the
Environment, vol. 111, pp. 53–61, 2008.

[133] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning. Cambridge, MA: MIT Press, 2006.

[134] P. Erickson, M. Cline, N. Tirpankar, and T. Henderson, “Gaussian pro-

cesses for multi-sensor environmental monitoring,” IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Sys-
tems, pp. 208–213, 2015.

[135] Scipy implementation of the L-BFGS-B algorithm., https://docs
.scipy.org/doc/scipy/reference/optimize.minimiz
e-lbfgsb.html.

[136] S. Bhat, I. Stenius, and T. Miao, “Real-time flight simulation of hydro-

batic AUVs over the full 0◦–360◦ envelope,” IEEE Journal of Oceanic
Engineering, vol. 46, no. 4, pp. 1114–1131, 2021.

[137] J. Fonseca, M. Aguiar, J. a. B. d. Sousa, and K. H. Johansson, “Algal

bloom front tracking using an unmanned surface vehicle: Numerical ex-

periments based on Baltic sea data,” IEEE OCEANS, pp. 1–7, 2021.
[138] J. Fonseca, J. Wei, T. A. Johansen, and K. H. Johansson, “Cooperative

circumnavigation for a mobile target using adaptive estimation,” CON-
TROLO, pp. 33–48, 2020.

[139] E.U. Copernicus Marine Service Information (CMEMS), “Baltic sea

ocean colour plankton, reflectances, transparency and optics L3 NRT

daily observations,” [Online]. Available: https://resources.m
arine.copernicus.eu/product-detail/OCEANCOLOUR
_BAL_CHL_L3_NRT_OBSERVATIONS_009_049.

[140] M.Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.Wheeler,

and A. Y. Ng, “ROS: An open-source robot operating system,” ICRA
workshop on open source software, vol. 3, p. 5, 2009.

[141] J. Aiken, “A chlorophyll sensor for automatic, remote, operation in the

marine environment,” Marine Ecology Progress Series, vol. 4, no. 2,
pp. 235–239, 1981.

[142] P. Cieślak, “Stonefish: An advanced open-source simulation tool de-

signed formarine robotics, with a ROS interface,” IEEE OCEANS, 2019.



Bibliography 171

[143] S. Bhat, I. Stenius, N. Bore, J. Severholt, C. Ljung, and I. Torroba Bal-

mori, “Towards a cyber-physical system for hydrobatic AUVs,” IEEE
OCEANS, pp. 1–7, 2019.

[144] S. Bhat, I. Torroba, Ö. Özkahraman, N. Bore, C. I. Sprague, Y. Xie, I.

Stenius, J. Severholt, C. Ljung, J. Folkesson, and P. Ögren, “A cyber-

physical system for hydrobatic AUVs: System integration and field demon-

stration,” IEEE OCEANS, 2020.
[145] C. I. Sprague, Ö. Özkahraman, A. Munafo, R. Marlow, A. Phillips, and

P. Ögren, “Improving the modularity of AUV control systems using be-

haviour trees,” IEEE/OES Autonomous Underwater Vehicle Workshop,
pp. 1–6, 2018.

[146] Ö. Özkahraman and P. Ögren, “Combining control barrier functions

and behavior trees for multi-agent underwater coveragemissions,” IEEE
Conference on Decision and Control, 2020.

[147] I. Stenius, J. Folkesson, S. Bhat, C. I. Sprague, L. Ling, Ö. Özkahraman,

N. Bore, Z. Cong, J. Severholt, C. Ljung, A. Arnwald, I. Torroba, F.

Gröndahl, and J.-B. Thomas, “A system for autonomous seaweed farm

inspection with an underwater robot,” Sensors, vol. 22, no. 13, 2022.
[148] M. Jafarian, E. Vos, C. De Persis, J. Scherpen, and A. van der Schaft,

“Disturbance rejection in formation keeping control of nonholonomic

wheeled robots,” International Journal of Robust and Nonlinear Con-
trol, vol. 26, no. 15, pp. 3344–3362, 2016.

[149] M. Jafarian, “Robust consensus of unicycles using ternary and hybrid

controllers,” International Journal of Robust and Nonlinear Control,
vol. 27, no. 17, pp. 4013–4034, 2017.

[150] H. Xu and J. Pan, “AUV motion planning in uncertain flow fields using

bayes adaptive MDPs,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 5575–5582, 2022.

[151] H. L. Kwa, J. Leong Kit, and R. Bouffanais, “Balancing collective ex-

ploration and exploitation in multi-agent and multi-robot systems: A

review,” Frontiers in Robotics and AI, vol. 8, 2022.
[152] C. Wang, D. Mei, Y. Wang, X. Yu, W. Sun, D. Wang, and J. Chen,

“Task allocation for multi-AUV system: A review,” Ocean Engineer-
ing, vol. 266, p. 112 911, 2022.



172 Bibliography

[153] Q. Cheng, D. Yin, J. Yang, and L. Shen, “An auction-based multiple

constraints task allocation algorithm for multi-UAV system,” IEEE In-
ternational Conference on Cybernetics, Robotics and Control, pp. 1–5,
2016.

[154] I. Lončar, A. Babić, B. Arbanas, G. Vasiljević, T. Petrović, S. Bogdan,

and N. Mišković, “A heterogeneous robotic swarm for long-term mon-

itoring of marine environments,” Applied Sciences, vol. 9, no. 7, 2019.
[155] Y. Zhang, R. S. McEwen, J. P. Ryan, and J. G. Bellingham, “Design and

tests of an adaptive triggering method for capturing peak samples in a

thin phytoplankton layer by an autonomous underwater vehicle,” IEEE
Journal of Oceanic Engineering, vol. 35, no. 4, pp. 785–796, 2010.

[156] C. Scholin, G. Doucette, S. Jensen, B. Roman, D. Pargett, R. Marin,

C. Preston, W. Jones, J. Feldman, C. Everlove, A. Harris, N. Alvarado,

E. Massion, J. Birch, D. Greenfield, R. Vrijenhoek, C. Mikulski, and

K. Jones, “Remote detection of marine microbes, small invertebrates,

harmful algae, and biotoxins using the environmental sample processor

(ESP),” Oceanography, vol. 22, no. 2, pp. 158–167, 2009.
[157] K. Law,A. Stuart, andK. Zygalakis, “Data assimilation,”Cham, Switzer-

land: Springer, vol. 214, p. 52, 2015.
[158] A. M. Moore, M. J. Martin, S. Akella, H. G. Arango, M. Balmaseda, L.

Bertino, S. Ciavatta, B. Cornuelle, J. Cummings, S. Frolov, P. Lermu-

siaux, P. Oddo, P. R. Oke, A. Storto, A. Teruzzi, A. Vidard, and A. T.

Weaver, “Synthesis of ocean observations using data assimilation for

operational, real-time and reanalysis systems: A more complete picture

of the state of the ocean,” Frontiers in Marine Science, vol. 6, p. 90,
2019.

[159] J. Anderson and R. N. Smith, “Predicting water properties with Markov

random fields for augmented terrain-based navigation in autonomous

underwater vehicles,” IEEE OCEANS, pp. 1–5, 2018.
[160] M. Sarkar, S. Nandy, S. Vadali, S. Roy, and S. N. Shome, “Modelling

and simulation of a robust energy efficient AUV controller,”Mathemat-
ics and Computers in Simulation, vol. 121, pp. 34–47, 2016.



Bibliography 173

[161] D. M. Crimmins, C. T. Patty, M. A. Beliard, J. Baker, J. C. Jalbert, R. J.

Komerska, S. G. Chappell, and D. R. Blidberg, “Long-endurance test

results of the solar-powered AUV system,” IEEE OCEANS, pp. 1–5,
2006.

[162] B. R. Page, R. Lambert, J. Chavez-Galaviz, and N. Mahmoudian, “Un-

derwater docking approach and homing to enable persistent operation,”

Frontiers in Robotics and AI, vol. 8, 2021.
[163] J. Pinto, M. Costa, K. Lima, P. Dias, J. a. Pereira, M. Ribeiro, R. Cam-

pos, Z. Mirmalek, R. Mendes, F. Castejón, J. Gilabert, M. P. Tomasino,

C. Magalhães, J. da Silva, P. Relvas, T. Lukaczyk, K. Skarpnes, M. Lud-

vigsen, A. Chekalyuk, and K. Rajan, “To boldly dive where no one has

gone before: Experiments in coordinated robotic ocean exploration,”

Experimental Robotics, vol. 19, pp. 472–487, 2021.
[164] Y. Zhang, J. P. Ryan, B. Kieft, B. W. Hobson, R. S. McEwen, M. A.

Godin, J. B. Harvey, B. Barone, J. G. Bellingham, J. M. Birch, C. A.

Scholin, and F. P. Chavez, “Targeted sampling by autonomous under-

water vehicles,” Frontiers in Marine Science, vol. 6, p. 415, 2019.
[165] G. Schirripa Spagnolo, L. Cozzella, and F. Leccese, “Underwater opti-

cal wireless communications: Overview,” Sensors, vol. 20, no. 8, p. 2261,
2020.

[166] A. Annaswamy, “Women in the IEEE control systems society [presi-

dent’s message],” IEEE Control Systems Magazine, vol. 40, no. 2, pp. 8–
11, 2020.

[167] National Academies of Sciences, Engineering, and Medicine, Sexual
Harassment of Women: Climate, Culture, and Consequences in Aca-
demic Sciences, Engineering, and Medicine, P. A. Johnson, S. E. Wid-
nall, and F. F. Benya, Eds. The National Academies Press, 2018.

[168] Forsknings-och samverkansprogrammet, Enkätstudie om genusbaserad
utsatthet och sexuella trakasserier i svensk högskolesektor. Stockholm:
Karolinska Institutet, KTH, Malmö Universitet, Nationella sekretariatet

för genusforskning, 2022.

[169] S. Knobloch-Westerwick and C. Glynn, “The matilda effect— role con-

gruity effects on scholarly communication,” Communication Research,
vol. 40, pp. 3–26, 2013.



174 Bibliography

[170] K. M. Elsesser and J. Lever, “Does gender bias against female lead-

ers persist? Quantitative and qualitative data from a large-scale survey,”

Human Relations, vol. 64, no. 12, pp. 1555–1578, 2011.
[171] A. E. Budden, T. Tregenza, L. W. Aarssen, J. Koricheva, R. Leimu, and

C. J. Lortie, “Double-blind review favours increased representation of

female authors,” Trends in Ecology & Evolution, vol. 23, no. 1, pp. 4–6,
2008.

[172] S. G. Roberts and T. Verhoef, “Double-blind reviewing at EvoLang

11 reveals gender bias,” Journal of Language Evolution, vol. 1, no. 2,
pp. 163–167, 2016.

[173] D. Maliniak, R. Powers, and B. F. Walter, “The gender citation gap

in international relations,” Cambridge University Press, vol. 67, no. 4,
889–922, 2013.

[174] J. Jansson and B. Tyrefors, “The genius is a male: Stereotypes and same-

sex bias in exam grading in economics at Stockholm University,” Re-

search Institute of Industrial Economics, Working Paper Series 1226,

2020.

[175] S. Laohaprapanon and S. G. Appeler, “Ethnicolr: Predict race and eth-

nicity based on the sequence of characters in a name,” GitHub, vol. 9,
p. 27, 2021.

[176] D. Zhou, J. Stiso, E. Cornblath, E. Teich, A. Blevins, K. Oudyk, and C.

Michael, “Virtualmario, & camp. dalejn/cleanbib: V1. 1.1.3,” Zenodo,
vol. 10, 2020.






