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Adaptive Sampling of Algal Blooms
Using Autonomous Underwater Vehicle and Satellite Imagery:

Experimental Validation in the Baltic Sea
Joana Fonseca*, Sriharsha Bhat, Matthew Lock, Ivan Stenius, Karl H. Johansson

Abstract—This paper investigates using satellite data to im-
prove adaptive sampling missions, particularly for front tracking
scenarios such as with algal blooms. Our proposed solution to find
and track algal bloom fronts uses an Autonomous Underwater
Vehicle (AUV) equipped with a sensor that measures the concen-
tration of chlorophyll a and satellite data. The proposed method
learns the kernel parameters for a Gaussian process (GP) model
using satellite images of chlorophyll a from the previous days.
Then, using the data collected by the AUV, it models chlorophyll a
concentration online. We take the gradient of this model to obtain
the direction of the algal bloom front and feed it to our control
algorithm. The performance of this method is evaluated through
realistic simulations for an algal bloom front in the Baltic sea,
using the models of the AUV and the chlorophyll a sensor.
We compare the performance of different estimation methods,
from GP to curve interpolation using least squares. Sensitivity
analysis is performed to evaluate the impact of sensor noise on
the methods’ performance. We implement our method on an
AUV and run experiments in the Stockholm archipelago in the
summer of 2022.

Index Terms—Adaptive Control, Marine Robotics, Gaussian
Processes, Satellite Data, Algal Blooms.

I. INTRODUCTION

Researchers worldwide have been using satellites, remote
sensing, and buoys to gather information on ocean phenom-
ena and inform forecast models. These methods tend to be
expensive, inefficient for spatial coverage, or unable to provide
trustworthy data. They always have a human in the loop for
decision-making or data post-processing. With this paper, we
design and implement a solution and make the open-source
software available, which allows for autonomous coastal sur-
veys using autonomous underwater vehicles (AUVs), focusing
on front tracking of ocean phenomena such as algal bloom
fronts.

A. Background and Motivation

Fronts are boundaries between water masses that differ
significantly in the value of one or more variables, such as
temperature, salinity, or substance concentrations. These fronts
shape marine ecosystems as their presence indicates the occur-
rence of several physical and biological processes of interest,
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Fig. 1: System overview with the SAM AUV, the GPS, the Sentinel satellite,
and the CMEMS data.

including transition zones, jets, eddies, and phytoplankton
blooms [1], [2]. Among these frontal phenomena, harmful
algal blooms (HABs) are the motivating scenario of this
paper. According to [3], “HABs cause human illness, large-
scale mortality of fish, shellfish, mammals, and birds, and
deteriorating water quality”. HABs occur when algae colonies
experience abnormal growth, which results in the production
of harmful toxins [4]. These toxins can cause significant harm
to marine ecosystems and pose a danger to human activities
in the Baltic Sea, such as tourism and aquaculture. Accurate
information about the location and movement patterns of algal
blooms is crucial to monitor and mitigate these detrimental
effects. Traditional methods for observation, such as satellite
imaging or ship-towed sensors, are generally unable to provide
measurements at the spatial and temporal resolutions required
to understand dynamic ocean phenomena [5]. While remote
sensing with satellites can offer a broad overview, such data
is weather-dependent and prone to false positives in coastal
areas. Thus, there is a significant scientific and societal interest
in obtaining in situ measurements and developing systems for
automated monitoring.

This paper proposes an approach to adaptive sampling of
algal bloom fronts using an AUV informed by satellite im-
agery. The proposed algorithm enables tracking multiple water
parameters, including chlorophyll a concentrations, turbidity,
dissolved oxygen, and salinity. Out of these broad sampling
possibilities, we are particularly interested in chlorophyll
fronts due to their connection with the occurrence of harmful
algal blooms (HABs) in the Baltic [6]. In Fig. 1, we illustrate
this cyber-physical system, consisting of the AUV, the GPS
signal that it uses for localization, the Sentinel satellite, which
provides raw imagery of the region, and the Copernicus
Marine Environment Monitoring Service (CMEMS), which
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reanalyses the imagery from the Sentinel satellite into more
accurate datasets that can then be used to inform our AUV.

B. Related work
There has been significant work in developing solutions for

autonomous ocean sampling. These solutions involve satellites,
research vessels, floats, gliders, or AUVs. Satellite imagery
offers broad datasets with varying resolutions but falls short for
shallow waters. Despite the shortcomings of satellite imagery
for coastal data, alternate solutions for near-shore regions
have been the topic of extensive research for the past 50
years in efforts to bridge that gap [7]. For example, in [8],
the authors propose a novel wavelet analysis with satellite
data from repeating paths for coastal coverage. On the other
hand, several solutions for in situ sampling, such as research
vessels, generally use towed platforms integrating cameras,
sensors, acoustic devices, and sidescan data [9]. In some cases,
they also use underwater electronic holographic cameras for
studying marine organisms such as plankton [10]. Focusing
now on autonomous in situ sampling, one of the most widely
used platforms is the profiling float, which moves with under-
water currents and is sometimes referred to in the literature
as a Lagrangian float. Profiling floats are more controllable in
regions of more diverse currents, but controlling the horizontal
motion of a profiling float remains challenging [11]. Despite
their limited controllability, profiling floats such as in the Argo
Program are perhaps the greatest international collaborative
effort in the history of oceanography and provide researchers
with open access to comprehensive data sets [12]. Underwater
gliders are more controllable than floats; in [13], the authors
who built the glider ”Spray” define gliders as autonomous
profiling floats that use a buoyancy engine to move vertically
and wings to glide horizontally. The creators of the glider
”Slocum” stated that their glider originated from the idea of
adding horizontal propulsion to floats [14]. The ”Seaglider”
[15] is another example of one of the first gliders to be
developed. With the development of gliders, the problem of
under-actuated controllability has been a subject of analysis
[16]. Gliders fall short in deterministic controllability, usually
have a very limited sensor payload, and require a minimum
operating depth of approximately 50m. These make them
unsuitable for coastal applications in shallow water. AUVs,
on the other hand, can carry different payload sensors, have
better controllability, and can operate at multiple depths.

AUVs have been considered for solving the environmental
sampling problem. One of the most common solutions in the
literature is the open-loop scenario with a fixed sampling pat-
tern. The most widely used sampling pattern is, undoubtedly,
the lawn-mower [17], which has been used for both single-
agent [18] and multi-agent scenarios [19]. However, other
relevant methods, such as the spiral and circular patterns in
[20], aim to improve efficiency and robustness. Or the oval
spiral coverage strategy to plan coverage paths that better
suit oval-shaped areas of interest [21]. While these open-
loop strategies enable and even guarantee coverage of survey
areas, they are inherently not designed to react or respond to
changes in the observed features. In such cases, there is great
motivation to close the loop.

Over the past two decades, there has been significant effort
in closing the loop using adaptive sampling strategies. Adap-
tive sampling is a closed-loop control architecture in which
an agent autonomously makes decisions during a mission
in response to environmental changes. As reviewed in [22],
adaptive sampling can be divided into three distinct objec-
tives: source localization, front determination, tracking, and
mapping. These objectives can be realized for different types
of targets: thermoclines, algal blooms, oils spills, etc., using
different vehicle configurations: single-agent, multi-agent with
leader-follower, cooperative multi-agent, etc. In [23], the focus
is on covering multiple thermoclines as they evolve in time
and space in a dynamic water column. In [24] and [25], the
problem of source localization using a multi-agent system is
approached as a gradient climb with optimal formation to
minimize the gradient estimate error. An example of front
determination is [26], where the authors use a single AUV
to find and track a salinity and temperature front while
zig-zagging around it. Considering the mapping problem, in
[27], the authors evaluate how to find the optimal path to
maximize the accuracy of the field estimates for single and
multi-agent scenarios. Also, in [28], the front determination
problem is considered with a single AUV zig-zagging the
front, but for bathymetric contours. In [29], a deep Chlorophyll
maximum layer is tracked and mapped using three agents
moving adaptively - one on the surface, one tracking the
layer, and one mapping the area around the layer. There are
other examples similar to our objective in this paper, in which
an adaptive sampling algorithm is proposed that augments a
standard Gaussian process (GP) with a nearest neighbor prior
[30]. Unlike our approach, this paper does not use external
data to aid the vehicle’s decisions, while being similar to our
method of building a GP model from measurements.

In this field, one of the rising problems considers integrating
external data (satellite imagery, numerical models and pre-
dictions, etc.) with local measurements taken by autonomous
agents such as AUVs. Specifically, the problem is how to
aid ocean sampling missions using external data. An early
example uses a predictive ocean model to assist in motion
planning for steering an AUV to a high-valued location [31].
Here, it is assumed that there is a predicted model for the day
of the mission, which is not available in this paper’s scenario.
Other related results include using knowledge from previous
missions to create a model [32] and using hydrodynamic and
biological model systems as prior information [33]. Such adap-
tive sampling is closely linked to data assimilation. Among
the first works in data assimilation for oceanic applications are
[34], [35]. In [36], the data collected by the AUV is augmented
with remote sensing, buoys, a ship, particle imaging systems,
and discrete water samples. In [37], the authors use a genetic
algorithm to optimize the deployment, measurements, and
information gain of a team of AUVs, ASVs, and mooring plat-
forms. Such measurements are then included in an estimation
framework to estimate and forecast environmental parameters
given a dynamic ocean model. In [38], the authors propose
using generic environmental models that are updated with data
collected by a team of AUVs to update the map used by these
vessels and, with it, perform mission-specific goals. And in
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[39], a sparse and variational Gaussian process is trained with
datasets of different seafloor textures and then used for seafloor
texture classification. Our approach, in contrast, uses satellite
data as prior in a Gaussian Process regression framework that
is similarly updated with local measurements from AUVs to
create high-resolution estimates of the environment around the
autonomous agents.

C. Contribution

The main contributions of this paper are an algorithm con-
taining a control law and a GP estimator, a sensitivity analysis
with estimation method comparison, and an experimental setup
and experimental demonstration in the Baltic sea. In greater
detail, this includes:

We implement a path-planning guidance law for adaptive
sampling for the AUV heading. This control law receives
information on the position of the AUV, the chlorophyll a
concentration measurement it took, and the gradient of the
chlorophyll a concentration gradient. We analyze the perfor-
mance of the control law for a chlorophyll a concentration
sensor uncertainty of 10−3mg/m3, with full AUV and chloro-
phyll a concentration sensor model. In this scenario, the front
tracking error concerning the chlorophyll a concentration front
reference is always below 0.02 mg/m3.

We propose a gradient estimator using GPs that estimates
the gradient of chlorophyll a concentration. As it moves, the
AUV records its position and chlorophyll a concentration.
The estimation is updated at each timestep by fitting a GP
model with the latest data points collected by the AUV. We
analyze the performance of the GP gradient estimator for a
chlorophyll a concentration sensor uncertainty of 10−3mg/m3,
with full AUV and chlorophyll a concentration sensor model.
In this scenario, the gradient estimation error concerning the
chlorophyll a concentration gradient field is always below
0.4 rad, corresponding to less than 22 degrees.

We design an experimental setup consisting of a cyber-
physical system integrating the AUV software, the AUV
hardware, the user interface, and a realistic simulator. The
AUV software includes numerous packages that can be divided
into the behavior tree, the algal bloom front tracking, the
onboard controllers, and the dead-reckoning. The algal bloom
front tracking library has been developed for the present
work and includes the control law and two implemented
estimation methods. It is available as an open-source con-
tribution in https://github.com/JoanaFonsec/gp4aes. The algal
bloom front tracking package was also developed for the
present work and is responsible for interfacing with the
other AUV packages, simulating the chlorophyll a sensor,
and plotting. It is available as an open-source contribution in
https://github.com/JoanaFonsec/algalbloom-tracking.

We run a sensitivity analysis in which we vary the standard
deviation of the chlorophyll a sensor and measure the impact
on the performance of the control law and the estimation
method, considering the full AUV and chlorophyll a sensor
model. The chlorophyll a sensor uncertainty we consider is
between 10−3mg/m3 and 10−1mg/m3. This is in line with the
chlorophyll a concentration sensors in the market, which have

a resolution of 10−2mg/m3. For this analysis, we consider two
estimation methods, one based on Gaussian Process regression
and the other based on Least Squares regression. The analysis
confirms that the control law tracking error and the gradient
estimation error increase as the standard deviation of the
chlorophyll a sensor increases. Particularly, for a standard
deviation equal and above 10−2mg/m3, the gradient estima-
tion error increases exponentially for the LSQ estimator and
linearly for the GP estimator.

We provide experimental results from two surveys in the
Stockholm archipelago in the Baltic Sea. In these experiments,
we demonstrate that the proposed algorithm performs well
in the real-time real-world scenario and compare them to a
simulation under experiment conditions. Our results indicate
that the front tracking error never exceeds 10 meters of
overshoot and undershoot and that the gradient estimation
error never exceeds 90 degrees. We also examine the sources
of error, namely surface waves that influence the AUV’s
movement but also partially occlude the GPS receiver, which
introduces Gaussian noise on the GPS-measured position of
the AUV.

D. Organization

The paper is organized as follows. In Section II, we in-
troduce the proposed front tracking algorithm. This includes
the high-level system architecture, the dataset we use, the GP
model for the chlorophyll-a concentration in the Baltic sea, and
the path planning guidance law. An overview of the hardware
and software components used in the AUV implementation
is given in Section III. In Section IV, we provide realistic
simulation results and a sensitivity analysis on the impact
of sensor noise on algorithm performance with a comparison
and evaluation of gradient estimation methods. Experimental
results follow in Section V, from field trials in the Baltic sea
in the summer of 2022. Concluding remarks, discussion, and
future directions follow in Section VI.

II. ALGAL BLOOM FRONT TRACKING

This paper considers algal bloom front tracking as an
adaptive environmental sampling problem. The objective of
front tracking is to find and track a front with limited global
information on its location or shape and only use local infor-
mation collected by the AUV as it moves to explore the map.
This limited global information consists of satellite imagery
from previous days to inform our model. Then, the AUV has
to decide where to explore next, given the information it has
collected so far. We approach this problem using an AUV with
a chlorophyll a sensor and remote satellite data from CMEMS.
Our solution consists of a novel system architecture containing
three main components, as seen in the three green blocks of
Fig. 2. They are a GP model estimator, a gradient estimator,
and a motion controller. In the following subsections, we
present the system architecture and its components.

A. System Architecture

The system architecture is summarised in Fig. 2. Here,
we illustrate the main components of the proposed system,

https://github.com/JoanaFonsec/gp4aes
https://github.com/JoanaFonsec/algalbloom-tracking
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Fig. 2: System architecture with its main components: satellite data, GP model
estimator, gradient estimator, motion controller, and AUV.

from the AUV to the motion controller, gradient estimator,
GP model estimator, and satellite data.

The AUV has a chlorophyll a sensor that measures the
chlorophyll a concentration at a set frequency as it moves in
the field. The AUV movement is dictated by the control com-
mand received from the motion controller. The motion con-
troller uses the AUV’s past measurements and an estimation
of the field gradient to calculate the control command, closing
the adaptive sampling loop. The gradient estimator uses the
past measurements taken by the AUV and a model of the
chlorophyll a concentration field to estimate the chlorophyll a
concentration field gradient. The GP model estimator uses the
previous days of satellite data to train kernel parameters of a
GP model that represents the field we want to estimate. Finally,
the satellite data consists of remote measurements of the
chlorophyll a concentration field from a few days preceding
the mission and is used in the GP model estimator to generate
the GP model estimate of the chlorophyll a concentration field.

B. Satellite Data

The satellite data concerns chlorophyll a concentration for a
given region. We denote this chlorophyll a concentration field
by δ(p), where δ denotes the chlorophyll a concentration at
position p. In this paper, we consider surface data only. Fig. 3
shows a plot of sample chlorophyll a concentration data, where
high regions of high concentration are highlighted in yellow
and regions of low concentration are highlighted in blue. The
dark grey area represents the land. This data has a spatial
resolution of 2 km by 2 km and is obtained from CMEMS [40].
The location is on the west coast of Finland, near the coastal
city Pori. We chose this location because a clear chlorophyll a
bloom front can be observed here. We hypothesize this is due
to the nutrients that the river Kokemäenjoki carries into the
Baltic sea [41]. This paper will focus on the region marked
by the red square taken on the 17th of April 2021. We chose
April because it is the spring season of algal blooms.

C. GP Model Estimator

The GP model estimator models the chlorophyll a concen-
tration field δ̄(p) for the given region and time, exploiting
prior information from satellite data of the previous days and
measurements taken by the AUV in real-time. Given this

Fig. 3: CMEMS data of chlorophyll a in the Baltic Sea (blue-yellow) and
land (dark grey).

application’s slow time scale, we assume that the chloro-
phyll a concentration fields at different days have identical
distributions, which simplifies model fitting and reduces the
computational complexity.

To obtain the chlorophyll a concentration model, we must
define the type of kernel that will accurately depict the process.
The kernel represents a priori knowledge about the process
by specifying how the chlorophyll a concentration data is
related to the corresponding spatial locations. Among the
multitude of kernels described in the literature, only some fit
the characteristics of the biogeochemical data we consider.
We use the Matérn kernel [42], which proves to be capable of
modeling different degrees of smoothness across both vertical
and horizontal length scales [43]. The covariance matrix
K ∈ RN×N is defined concerning two points in the field map,
xi and xj . Each matrix element is computed by the kernel
function k(xi, xj) for which 1 ≤ i, j ≤ N . The kernel is
defined as

Ki,j = k(xi, xj) = σ2
k(1 + r)e−r, (1)

where r2 = (xi − xj)
⊤M(xi − xj), with

M =


(√

3
l0

)2

0

0
(√

3
l1

)2

 . (2)

The kernel hyper-parameters are (σ2
k, l0, l1), where σ2

k is
the variance of the chlorophyll a concentration process, and
(l0, l1) define the length scale in each dimension.

The kernel hyper-parameters, (σ2
k, l0, l1), are estimated by

maximizing the log marginal likelihood of the prior distribu-
tion - using only the available satellite data from previous
days. This data is called the training set and consists of a
vector of size N containing positions in the chlorophyll a
concentration field X = [p1, ...,pN ], and their respective
chlorophyll a concentration values y = [δ1, ..., δN ]. The log
marginal likelihood to maximize is

log p(y|X) = (3)

− 1

2
y⊤(K + σ2I)−1y − 1

2
log |K + σ2I| − N

2
log 2π

where K is the N ×N covariance matrix in which each value
is created as in (1), and σ is the noise variance of each data
point.
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Using the trained kernel, the GP model can be fitted with the
collected data, using the standard conditioning formulae [42]
to obtain the model for the chlorophyll a concentration field,
which we define as δ̄(p). To do so, we consider the n most
recent measurements taken by the AUV. It contains the AUV’s
positions P = [p1, ...,pn], and its chlorophyll a concentration
measurements ∆ = [δ1, ..., δn]. Then, the mean of the model
δ(p) is denoted by δ̄(p) and the covariance by cov(δ(p)). We
can compute the mean and covariance at some point p∗ as

δ̄(p∗) = K∗
(
K + σ2I

)−1
∆ (4)

cov(δ(p∗)) = K∗∗ −K∗
[
K + σ2I

]−1
KT

∗ (5)

where K ∈ Rn×n corresponds to the covariance between
the data in points P, K∗ ∈ R1×n corresponds to the covariance
between the data in points p∗ and P, K∗∗ = σ2 corresponds
to the variance at the point p∗, and σ2 is the variance of
the measurement noise. Since the set of the n most recent
measurements is changing in time, then our estimate δ̄(p∗) is
also changing in time.

To evaluate the accuracy of the GP model applied to
chlorophyll a concentration fields, the kernel is trained using
both the low and high-resolution datasets. Then, the goodness
of fit of both sets of parameters is evaluated by comparing the
respective predictions of the chlorophyll a concentration to the
ground truth. Using past satellite data, we construct the set X
and y in (3) from data from multiple process realizations. Such
division of the training dataset prevents overfitting. Then, X
and y are composed of data from 3 days before the prediction
date, selecting non-overlapping random scattered sub-datasets
of the same size each day. The optimization algorithm for
the maximization of (3) is L-BFGS-B, which is implemented
in the scipy library, and the resulting parameters follow in
Table I.

σ2 l0 l1
Low res 44.2959 0.5465 0.2890
High res 18.2106 0.0559 0.0245

TABLE I: Kernel hyperparameters obtained through maximum likelihood
estimation, using the low-resolution and high-resolution datasets.

The results of this comparison are presented in Figures 4a
and 4b. The observations and test datasets are approximately
of size 1500 and 13500, respectively, having in consideration
a ratio of 10/90% between both, where the former is a set
of scattered samples from the ground truth data in figure 4c,
having a standard deviation of σn = 10−3.

Visually, the results are very similar. The average relative
error of the prediction compared to the ground truth data
in figure 4c was approximately 12% and 11% using low
and high-resolution data, respectively. Based on the similarity
between results, we conclude that the proposed GP model
accurately represents the statistical properties of the chloro-
phyll a concentration in the operations scenario, even when
the training dataset is different from the ground truth data.

D. Gradient Estimator

The gradient estimator derives the previously obtained
model of the chlorophyll a concentration to estimate the

(a) Predicted mean using lower resolution data.

(b) Predicted mean using higher resolution data.

(c) Higher resolution dataset that simulates the ground truth.

Fig. 4: Predicted mean from scattered measurements compared to the ground
truth (high-resolution data).

chlorophyll a concentration gradient field. From the equation
(4), the gradient ∇δ̄(p∗) is obtained by computing the deriva-
tive of the predicted chlorophyll a concentration with respect
to position p∗,

∇δ̄(p∗) = ∇p∗

[
K∗

(
K + σ2I

)−1
∆
]
. (6)

Since the second and third terms inside the gradient in (6)
are constant relative to p∗, we only need to compute ∇p∗K∗.
Each element of the K∗ matrix is given by (1), in which xi

corresponds to p∗ and xj corresponds to pj ∈ P. So we take
the derivative of k(p∗,pj) with respect to p∗,

∇p∗k(p∗,pi) = −σ2
ke

−rM(p∗ − pj),

where M and r are as in subsection II-C. Note that the gradient
of the kernel equation is not defined when the test point in P
is equal to the current position p∗. To account for this, the
current position p∗ is not included in P when computing (6).
Then the gradient estimate at position p∗ is

∇δ̄(p∗) = ∇p∗K∗
(
K + σ2I

)−1
∆. (7)

E. AUV
The AUV receives the control command u from the motion

controller, which is the reference for direction and velocity.
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Fig. 5: Control architecture with the motion controller, the gradient estimator,
and the AUV.

Then, using its internal lower-level controller, the AUV turns
this reference u into thrust commands to its thrusters τC . For
this AUV, we consider the 6DOF model in which the state is
the velocity vector given by ν =

[
u v w p q r

]T
containing the translational and rotational velocities. Note that
these velocity vector elements directly influence the AUV’s
position p.

The dynamics of the AUV can be formulated as a nonlinear
system represented by a vectorial notation presented by Fossen
[44] as follows:

(MRB +MA)ν̇ + (CRB(ν) +CA(ν))ν+

D(ν)ν + g(η) = τC , (8)

where MRB is the rigid body mass and inertia matrix and
CRB is the matrix of Coriolis and centripetal terms on the left-
hand side. MA and CA(ν) represent the effect of added mass,
D(ν) represents the damping matrix, and g(η) is the vector
of gravitational and buoyancy forces and moments. τC is a
vector of external control forces based on the AUV’s actuator
configuration. The damping matrix D(ν), in particular, has a
significant effect on the nonlinear hydrodynamics of the AUV
[45] and is a key simulation parameter.

F. Motion Controller

The control law we propose is summarised in Fig. 5. It relies
on the chlorophyll a gradient ∇δ and the latest chlorophyll a
concentration measurement δ to produce a control command
u. First, we define a front as a level set of a time-varying
scalar field δ : R× R2 → R:

F (t) = {p ∈ R2 : δ(t,p) = δref}, (9)

where δref is some reference value, p the position and t time.
Assuming that the reference value δref is known, we used

the previously developed control law as in [46]. There, we
define the control law as

u(t,p) = useek(t,p) + ufollow(t,p)

useek(t,p) = −αseek(δ(t,p)− δref)∇δ(t,p)

ufollow(t,p) = αfollowRπ/2∇δ(t,p),

(10)

where ∇δ is the gradient of δ with respect to p, Rπ/2 is a
mapping which rotates vectors by 90 degrees, and αseek and
αfollow are tunable parameters.

As seen in Fig. 6, the control law consists of two com-
ponents: useek, which controls the AUV towards the front by
following the gradient field, and ufollow which controls the
AUV to move along the front, perpendicularly to the gradient
field. By designing the control law with these two components,
we ensure convergence to the front [47]. Namely, note that if

ufollow

u

∇δ

useek

Fig. 6: Seek and follow components of the control law and gradient.

δ(t,p) ̸= δref , the useek component grows proportionally to
this difference, making seeking the front a priority, comparing
to following the front. On the other hand, if the AUV is on
the front, the most prominent component becomes the ufollow.

III. EXPERIMENTAL SETUP

The test platform used in these experiments is the SAM
AUV, a research platform developed at the Swedish Maritime
Robotics Centre (SMaRC) 1. The algal bloom front tracking
algorithm from the previous section is integrated into the
SAM AUV software to be deployed in the field and validated
experimentally.

The experimental setup is a cyber-physical system (CPS)
whose architecture is summarised in Fig. 7. The user in-
teracts with the AUV software system through an interface
that enables them to send mission plans and monitor the
current status. A behavior tree monitors the mission status
and delegates actions to an algal bloom front tracker. The
algal bloom front tracker reads payload measurements of
chlorophyll a data and sends waypoints to onboard feedback
controllers. These onboard controllers, in turn, send commands
to actuators considering state feedback. Such state feedback
is provided by dead-reckoning based on onboard navigation
sensors on the AUV hardware. The entire software system
can also be validated in simulation via the Stonefish simulator
[48]. Each component of the CPS will be further described in
the following subsections.

A. AUV Hardware

We begin by describing the SAM AUV hardware in the
upper right corner of Fig. 7. SAM, short for Small and
Affordable Maritime robot (as seen in Fig. 8), is a torpedo-
shaped, under-actuated AUV that serves as an agile research
platform for testing new sensing, perception, and control
strategies [49], [50].

Five key actuator subsystems enable SAM to be highly
maneuverable and hydrobatic (these are depicted in Fig. 9):

1) The Longitudinal Center of Gravity (LCG) system uses
a movable battery pack to change the center of gravity
position longitudinally and enable static pitch control.

2) The Transversal Center of Gravity (TCG) system con-
tains rotating counterweights that enable static roll con-
trol or changes to the AUV’s stability margin.

3) The Variable Buoyancy System (VBS) facilitates buoy-
ancy regulation and static depth control by pumping
water in and out of a tank.

1https://www.smarc.se

https://www.smarc.se
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Fig. 7: The cyber-physical system architecture integrates the user interface, AUV software, AUV hardware, and simulator.

Fig. 8: The SAM AUV developed by SMaRC.

Fig. 9: AUV subsystems: 1. Battery pack, 2. Longitudinal Center of Gravity
Trim System, 3. Variable Buoyancy System, 4. Transversal Center of Gravity
System, 5. Thrust Vectoring System with Counter-rotating Propellers.

4) Counter-rotating propellers provide propulsion while
compensating for propeller-induced roll.

5) The Thrust Vectoring system contains a servo-actuated
nozzle for steering in the horizontal and vertical planes.
The thrust vectoring nozzle enables rapid maneuvering
in the horizontal and vertical planes.

Sensors have been integrated into SAM for navigation and
environmental sensing. Navigation sensors include an Inertia
Measurement Unit, a compass, a GPS receiver, a Doppler Ve-
locity Logger (DVL) for bottom tracking, and pressure sensors
for depth measurements. Payload sensors include cameras and
sidescan sonar for inspection and surveying, a forward-looking
sonar for obstacle avoidance, and a Conductivity-Temperature-
Depth (CTD) probe for water-column monitoring. For our
algal bloom front tracking application, we use a chlorophyll a-
turbidity-phycocyanin fluorometer for phytoplankton sensing.

B. Stonefish Simulator

Before running autonomy software on the SAM AUV,
simulations of mission scenarios can be performed within the

Fig. 10: Print screen of the Stonefish simulator.

Stonefish simulator, represented in the bottom right corner of
Fig. 7. Stonefish offers a photo-realistic simulation environ-
ment where entire missions can be modeled and rehearsed. The
AUV’s dynamics are modeled within the simulator together
with models of the sensors. Objects, environmental features,
and bathymetry can be imported into the simulator to create
mockups of planned environments. Within Stonefish, percep-
tion and planning software can be validated before deployment
on the hardware.

For the application presented in this paper, the satellite data
for algal blooms is modeled in Stonefish as a lookup table
of chlorophyll a values over a grid encompassing the entire
simulation environment. A simulated chlorophyll sampler in-
terpolates the relevant chlorophyll measurement from this grid
based on the AUV’s current position. The software interfaces
within the Stonefish simulator and the real SAM AUV are
identical, thus enabling virtual validation of a full mission
sequence for algal bloom tracking.

C. AUV Software

The four AUV software components presented in the center
of Fig. 7 are further detailed in this section. The autonomy
software of SAM runs on the Robot Operating System (ROS)2

environment. Its sub-components include a behavior tree for
decision-making and mission execution, a path planner for
algal bloom front tracking, onboard controllers for path fol-
lowing, and a dead-reckoning package for navigation. These
software packages are also available in an open-source repos-
itory in https://github.com/smarc-project.

2https://www.ros.org

https://github.com/smarc-project
https://www.ros.org
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1) Behavior Tree: SAM uses a Behavior Tree (BT) to
ensure safe and transparent mission execution. A BT is a reac-
tive decision-making structure that is comprised of Sequences,
Fallbacks, Actions, and Conditions. The main objective of the
BT is to receive a mission plan and delegate actions (e.g.,
waypoints) to lower-level systems (e.g., motion planners and
controllers) while checking the safety criteria of the AUV
simultaneously and continuously. In an unsafe situation, the
BT executes emergency actions to bring the system back to a
safe state. A BT ensures safety and compliance requirements
during mission execution by disallowing unsafe behaviors
autonomously. Further information on designing BTs for un-
derwater robots can be found in [51], [52].

The Gaussian process path planner presented in Section II-F
is integrated into the BT with additional conditions and actions
considering satellite data ingestion, chlorophyll a sampling,
and front-tracking. Each algal bloom tracking experiment
using SAM follows a set operational sequence. Considering
a relevant area with algal blooms, the following workflow is
used for sampling and tracking the bloom:

1) An area of interest is specified, and satellite imagery is
downloaded.

2) An initial mission plan is set via a user interface for the
AUV to traverse to the algal bloom feature.

3) The AUV is launched, and a GPS fix is acquired.
4) The AUV starts the mission and follows user-defined

waypoints to reach the algal bloom front’s vicinity.
5) The AUV detects the front through a chlorophyll sensor,

and the front-tracking algorithm is engaged.
6) The path planner generates new waypoints to track

the front upon sampling, and the AUV follows these
waypoints to track the front.

This sequence is also rehearsed within the Stonefish simu-
lator. To follow such a mission sequence, the BT for algal
bloom tracking is summarised in Fig. 11. A sanity check
on chlorophyll measurements is performed in the first sub-
tree. Second, safety conditions are checked. If either fails,
the mission is aborted, and emergency actions are performed.
Third, if the system is safe and measurements are available,
the user-defined waypoint mission is followed. Fourth, if the
AUV reaches the front, the algal bloom front following action
is performed. This is further detailed below.

Such a BT structure allows the designer to prioritize actions,
sequence missions, and ensure the vehicle operates safely
while keeping the overall setup modular and easy to under-
stand.

2) Algal Bloom Front Tracking: The algorithm of the
previous section is incorporated as the algal bloom front
following action in the BT. The action ingests payload data
on chlorophyll concentration and sends live waypoints to the
onboard controllers so that the AUV follows the front.

When the AUV crosses the algae front, the front tracking
behavior is enabled, with a higher priority than following the
original waypoints (see Fig. 11). A path planner for front
tracking sends new waypoints to the AUV based on live
measurements. The AUV samples the front and follows the

?

Safe?

Emergency Action

Mission complete?

?

Find algal bloom front

Front following action

Safety Behavior

Front tracking

At front? Front finding

?

Measurement?

Emergency Action

Measurement 
check

Fig. 11: High-level view of the BT used for algal bloom front tracking. Inner
nodes are sequences (arrows) and fallbacks (question marks). Leaf nodes
are actions (rectangle) and conditions (ellipse). All nodes can return Success
(green), Failure (red), and Running (blue).

edge of the bloom. Once the AUV has exited the front, the
vehicle will fall back to following the operator’s plan.

3) Onboard Controllers: The waypoints sent from the
original mission plan and the front-tracking algorithm provide
input to the onboard controllers on SAM. These onboard
controllers enable the AUV to follow pre-defined waypoints
and track the algal front. Given a set of waypoints, a line-
of-sight guidance law minimizes cross-track error and ensures
the vehicle can approach each waypoint at a set heading and
depth. Feedback controllers then control the AUV to follow
these set points. Further information on the waypoint following
guidance law can be found in [53].

In SAM’s case, the control force vector τC(c) in equation
(8) is a function of the available actuator inputs, which are
contained in

c =
[
rpm1 rpm2 de dr LCG V BS

]
, (11)

where rpm1,2 represent the propeller speed, de and dr are
vertical and horizontal thrust vector angles, and LCG and
V BS specify the position and buoyancy level, respectively.

The feedback control architecture is presented in Fig. 12).
First, we consider flight control to regulate the heading and
depth where cascaded Proportional-Integral-Derivative (PID)
controllers are used to command the thrust vector angles. In
the outer loop, the controllers provide a yaw rate and pitch
setpoint, which are translated to actuator commands to the
thrust vectoring system in the inner loop. These account for
couplings between states for flight control. Second, to stabilize
the AUV in pitch and depth, additional PID controllers control
the trim (LCG) and buoyancy (VBS) subsystems. Finally, cou-
pled roll and velocity control are realized using parallel PIDs
to command the counter-rotating propellers. These provide an
average propeller rpm to achieve the desired velocity while
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Fig. 12: The feedback control architecture on SAM with cascaded heading
and depth PIDs for flight control (top), trim stabilization with pitch and
buoyancy control (middle), and coupled velocity and roll control with the
counter-rotating propellers (bottom).

also providing a differential rpm between the two propellers
that causes the AUV to hold a roll angle. It is also possible
to directly command constant rpm values instead of a desired
velocity. The combination of flight and trim controllers enables
SAM to track the algal front at a specified velocity or propeller
rpm but are dependent on reliable state feedback.

4) Dead Reckoning: Underwater navigation is challenging
because radio waves attenuate rapidly in water. This means
that GPS-based positioning and navigation are not available
underwater — we need to use inertial and acoustic sensors
for estimating the AUV’s position, orientation, and velocities.
Dead reckoning is thus used for obtaining state feedback.
An Extended Kalman Filter is used to fuse acoustic and
inertial measurements collected by the AUV’s onboard sensors
to estimate the vehicle’s current position, orientation, and
velocity. In particular, the IMU and compass are used to obtain
orientations, angular velocities, and accelerations, the DVL is
used to obtain linear velocities, and the pressure sensor is used
to calculate the depth. These are then fused and integrated with
a motion model to obtain a position and velocity estimate.

Fig. 13: Print screen of the user interface: Node-Red.

Fig. 14: CMEMS data of chlorophyll a concentration in the Baltic Sea (blue-
yellow), clouds and cloud coverage (black), and land (dark grey).

D. User Interface

The user interacts with SAM’s software system via the
user interface in the left corner of Fig. 7. As represented
in Fig. 13, it consists of a web-based graphical interface
based on Node-RED. It enables the operator to plan the
mission on a world map and monitor the vehicle’s current
status during the mission. Different AUV parameters can be
tracked, new missions can be run, and the current status of
several measurements can be observed. A second graphical
user interface allows test engineers to run specific hardware
drivers and controllers on SAM for low-level control and
validation.

IV. SIMULATION RESULTS

In this section, the control and estimation components of
the proposed system architecture are tested in a front-tracking
procedure in the operational area in Fig. 4c. The simulation
starts by deploying the vehicle close to the front and providing
an initial heading setpoint towards it. When the AUV reaches
the front, the gradient estimation is triggered, and the control
law receives the estimated value from the GP model as an
input. The section is divided into three subsections: simulation
setup, numerical results, method analysis, and comparison.

A. Simulation setup

In this subsection, we introduce the setup for the simulations
presented in the following subsections. For this scenario,
we consider the environment illustrated in Fig. 14 in which
we will deploy the AUV and track the algal bloom front.
Note that this environment we consider using this data is for
simulation purposes only and differs from the satellite data
used to inform the GP model, as described in subsection II-B.
Here, the chlorophyll a concentration is represented by a map
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that goes gradually from a high concentration in yellow to
a low concentration in blue; these are the values that will
later be measured by the chlorophyll a concentration sensor
mounted on the AUV. Specifically, the simulated mission will
occur inside the red square. The data used to simulate this
environment has a spatial resolution of 300 m by 300 m
[54] from the exact satellite data location considered earlier.
This environment is modeled within the Stonefish simulation
environment presented in the previous section. Further, the
entire chlorophyll a concentration map from the satellite image
is integrated as a lookup table to enable simulated sampling.

The source code that implements the algorithm is available
as an open-source contribution on two repositories. The first
one is the Gaussian Processes for Adaptive Environmental
Sampling (GP4AES) library, which includes the GP model
estimator, the gradient estimator, and the motion controller
https://github.com/JoanaFonsec/gp4aes. The second one is the
ROS [55] interface, which uses the GP4AES library and
handles the connection with the AUV’s software https://github.
com/JoanaFonsec/algalbloom-tracking.

The simulation starts in the Stonefish Simulator by de-
ploying the AUV close to the front and providing an initial
estimated gradient. When the AUV is near the front, the
gradient estimation is triggered. The AUV travels at a constant
speed of v = 1 m/s. For that reason, we are interested
only in the ratio of αseek and αfollow, and thus the latter
is set to 1. Moreover, based on the available satellite data,
we consider δref = 7.45 mg/m3. While tracking the front,
the AUV collects measurements at a frequency f = 1 Hz
while considering a standard deviation of the measurement
noise of σ = 10−3 mg/m3. The measurements are filtered
using a weighted moving average filter of size 3, with w =
[0.2, 0.3, 0.5]

δfiltered(t) = w−2δ(t− 2) + w−1δ(t− 1) + w0δ(t). (12)

With the same sampling rate, the gradient is estimated as in
(6), using data from the last n = 200 measurements. Then we
apply a first-order low pass filter, with α = 0.97,

∇δfiltered(t) = α∇δ(t− 1) + (1− α)∇δ(t). (13)

The parameters described are summarised in Table II.

σ αseek v n δref α
10−3 mg/m3 10 1 m/s 200 7.45 mg/m3 0.97

TABLE II: Control algorithm parameters.

B. Numerical results

In this subsection, we present and analyze the results from
simulated missions using two gradient estimation methods.

We illustrate the complete AUV mission in Fig. 15. The
AUV follows the front while collecting chlorophyll a concen-
tration measurements, estimating the chlorophyll a concentra-
tion field and its field gradient, and updating its direction. The
complete mission has a duration of approximately 23 hours.
The starting position is far from the bloom and represented
by the white star, while the final position is on the front
and represented by the white square. In this figure, the AUV

closely follows the algal bloom front. This is further analyzed
in subsection IV-B, in which we focus and zoom-in in on the
area inside of the blue square.

In Fig. 16, we zoom in on a region of the longer mission,
previously defined by a blue square, to focus on the perfor-
mance of the gradient estimation and front tracking algorithm.
This region corresponds to about 5 hours of mission time.
Here we illustrate the gradient performance through arrows
representing the true and estimated gradients along the path.
The true gradient refers to the gradient that the AUV would
be able to compute if it had access to the global information
of the field. We compute it by taking the spatial derivative of
the chlorophyll a concentration field. The estimated gradient
refers to the output of the gradient estimator, as in (7). The
angle between the true and estimated gradient arrows indicates
the gradient error. However, in this scenario, the chlorophyll a
concentration field is non-convex and fast-changing even in
small areas. Therefore, the gradient is an abstraction that
gives an idea of direction rather than an exact measure of the
gradient. If we analyze the straight portions of the path, we
would say that the error is very close to zero. In contrast, we
could say that the error is larger by analyzing the portions of
the path with higher curvature. At the same time, the gradient
looks ambiguous and sensitive to small changes in position.
As for both the control performance and comparison between
gradient estimators, this figure doesn’t allow for such analysis
so we zoom-in in on the two areas inside the blue squares.

Let us now analyze the performance of the control and its
control components in Fig. 17. These figures correspond to
the two zoom-in locations in the previous figure; the front
is the thin black line, and a thicker red line represents the
AUV path. We also plot the seek and follow components
of the control law using arrows along the AUV path. The
control law is constructed as in eq. 10, and it is a sum of
the seek component, which has the same direction as the
estimated gradient, and the follow component, which has a
perpendicular direction with respect to the estimated gradient.
This sum constitutes the control law corresponding to the
AUV’s direction of movement. The first zoom-in corresponds
to about 15 minutes of mission time. Here, for both estimators
in Fig. 17a and Fig. 17b, the AUV always follows the front
closely and with minimal error and without visible differences
of performance among the estimators. This is expected as the
front is smooth in curvature, and the AUV remains on top
of the front. The control seek component accounts for small
adjustments in the trajectory. The second zoom-in corresponds
to about 30 minutes of mission time. In Fig. 17c and Fig. 17d,
the AUV remains on top of the front most of the time; thus,
the control follow component dominates the control law. On
the other hand, once the curvature changes faster, the control
follow component is reduced, and the control seek component
becomes the dominating component. In this scenario of fast-
changing curvature, the AUV seems to have a delay in
updating its direction. Two leading causes for this behavior
are the AUV’s turning radius and the update function with the
update rate on the gradient. The gradient’s update function in
(13) introduces a delay and a cut-off frequency. This cut-off
frequency is inversely proportional to the update rate. Hence,

https://github.com/JoanaFonsec/gp4aes
https://github.com/JoanaFonsec/algalbloom-tracking
https://github.com/JoanaFonsec/algalbloom-tracking
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Fig. 15: Overview of the full mission having the trajectory of the AUV (red) tracking the front (black) in the chlorophyll a field (blue-yellow). The white star
indicates the initial position, and the white square the final position.

(a) GP estimator (b) LSQ estimator
Fig. 16: Trajectory of the AUV (red) tracking the front (black line), with arrows representing the true and estimated gradient.

(a) GP estimator (b) LSQ estimator

(c) GP estimator (d) LSQ estimator
Fig. 17: AUV path (red) tracking the front (black), with arrows representing seek and follow components of the control law.
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(a) GP estimator (b) LSQ estimator
Fig. 18: Concentration of chlorophyll a: measurements from the AUV, and reference value.

(a) GP estimator (b) LSQ estimator
Fig. 19: Gradient of chlorophyll a: AUV estimated gradient, and true gradient.

(a) GP estimator (b) LSQ estimator

(c) GP estimator (d) LSQ estimator
Fig. 20: Control law components: seek and follow.

the algorithm’s performance becomes a trade-off between the
smoothness introduced by the update function with a lower
update rate and the delay it introduces. For this scenario,
we considered smoothness of movement a more important
objective than the apparent delay in the tighter curvature of
the front. As for the performance comparison between the two
gradient estimation methods, it is apparent from Fig. 17 that
the GP gradient estimator allows for closer tracking of the
front, most notably at regions with fast-changing curvature.

We further analyze the algorithm’s behavior through time
series plots in Fig. 18 and Fig. 19 corresponding to the zoom-in
area in Fig. 16. First, we consider the chlorophyll a concentra-
tion measurements taken along the path in Fig. 18. The time
series indicates that, as seen in the previous figures, the AUV
is always on top of the front, oscillating around it and with a
minimal error, in this case, lower than ±0.1mg/m3. Second,
we consider the gradient field estimation also taken along the
mission, in Fig. 19. This time series also confirms what we
saw in the previous figures. Here we can see both the delay of
the estimated gradient and its smoothness compared with the
true gradient. No major performance differences exist among
the gradient estimators for either of the time series plots.
Finally, let us further analyze the control law, considering
the time series of the two control components in Fig. 20,
for the regions defined in Fig. 17. In Fig. 20a and Fig. 20b,
we consider the first zoom-in area with an almost linear
segment of the front. Here we get a near-constant behavior
of both controller components, where the follow component

is almost always 1, and the seek component is near zero most
of the time. In Fig. 20c and Fig. 20d, we consider the second
zoom-in, which contains two tight curves. Here the follow
component also dominates the control law, with exceptions in
two instances at t = 8.79 and t = 9.02, corresponding to the
two peaks in trajectory curvature, in Fig. 17c and Fig. 17d. For
both examples, the follow component dominates the control
law, and the seek component increases when the AUV is far
from the front. Here, the difference in performance of the
two gradient estimators is not visible. Thus, the following
subsection is dedicated to properly evaluating the behavior of
the different estimators.

C. Sensitivity analysis

In this subsection, we analyze the performance of the
estimation algorithms for a varying standard deviation of
chlorophyll a concentration sensor noise.

The sensor noise we consider for this analysis varies be-
tween 10−3mg/m3 and 10−1mg/m3. This is in line with the
chlorophyll a concentration sensors in the market, which have
a resolution of 10−2mg/m3. To analyze the impact of the
noise introduced by the sensor, we remove the moving average
window used on the measurements introduced by eq. 12.
We then run multiple simulations using different standard
deviations of the sensor noise and estimation methods. For
this analysis, we consider two estimation methods: Gaussian
Process regression, which is used in this paper, and Least
Squares, which is used in the literature. We obtain both the
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Fig. 21: Influence of sensor noise in the tracking error, for two different
estimation algorithms: GP and LSQ.

Fig. 22: Influence of sensor noise in the gradient estimation error, for two
different estimation algorithms: GP and LSQ.

gradient estimation and tracking errors from each simulation.
Each simulation results in a data point in this subsection’s
results.

The gradient estimation error corresponds to the difference
between the true gradient ∇δ(t) and the estimated gradient
∇δ̄(t). In Fig. 21, we illustrate the impact of sensor noise
on this error. Here the tracking error increases exponentially
with the sensor noise for both estimators. The difference in
performance between estimators becomes exponentially bigger
from the standard deviation of sensor noise of 0.02mg/m3.

The tracking error corresponds to the difference between
the measured chlorophyll a concentration δ(t) and the chloro-
phyll a reference δref . In Fig. 22, we illustrate the impact of
sensor noise on this error. Here the tracking error increases
exponentially with the sensor noise for both estimators (note
that the x-axis is in logarithmic scale). The difference in
performance between estimators becomes much bigger from
the standard deviation of sensor noise of 0.01mg/m3.

From this comparison, we can conclude that the GP estima-
tor performs better than the LSQ-based estimator for gradient
estimation and front tracking. We can also conclude that the
error grows substantially from a standard deviation of sensor
noise of 0.01mg/m3.

V. EXPERIMENTAL RESULTS IN THE BALTIC SEA

This section contains the results obtained from experiments
using the components introduced in the previous sections,
summarised in Fig. 7. Along with the numerical simulation
study, the gradient estimator and motion controller were val-
idated in field experiments. These experiments took place in
the Stockholm archipelago in the Baltic Sea, near the island of
Djurö, in an area, with slightly different starting positions. We
ensured safety by following the AUV by boat as in Fig.23,
by reducing the AUV’s speed to approximately 0.1m/s, and
by constraining the survey area to a small region with low
ferry traffic. We also ran the surveys on the surface so that

Fig. 23: The AUV in the water on the mission day, while tethered to the boat.

it is possible to get position feedback using GPS, thereby
counteracting the uncertainty from exclusively using dead
reckoning. To satisfy the constraints on maximum speed and
small survey area, we scaled the data in Fig.14 100 times.
This data was used to simulate the chlorophyll a concentration
sensor as a look-up table, given that there are no algal blooms
in this small area.

In Fig. 24, we illustrate two surveys and a simulated
scenario. The first survey, in Fig. 24a, was conducted on July
18th, 2022. It corresponds to about 12 minutes of mission
time at an average speed of 0.11m/s. The second survey, in
Fig. 24b, was conducted on August 11th, 2022. It corresponds
to about 10 minutes of mission time at an average speed of
0.11m/s. To better analyze and understand the results, we also
present a simulated scenario Fig. 24c in which we set all
the conditions to match the conditions of the experiments as
closely as possible. These include the scaled data as a look-up
table for the simulated sensor, the initial position, GPS noise,
and a similar survey length of approximately 10 minutes.

Let us now analyze the results by zooming in on the survey
areas and examining the components of our algorithm. In
the first zoom-in in Fig. 25, we evaluate the trajectory of
the AUV and gradient estimation. The trajectory of the real
AUV in both surveys, in Fig. 25a and Fig. 25b, appears very
jittery as opposed to previous chapters in which we simulated
a mission. This effect is due to two phenomena: the noise
in the GPS signal and water currents. Water currents drag
the AUV to move in a different direction than the one the
algorithm calculated. These currents are also one of the causes
for the jittery GPS signal as, in the case of our AUV, the GPS
receiver is a few centimeters above the surface, and the signal
quality is directly influenced by the existence of waves that
can partially cover the signal. In Fig. 25c, we attempted to
emulate this phenomenon by introducing Gaussian noise on
the GPS receiver.

We can also notice how the front tracking errors appear large
for both surveys and the simulated scenario, as the AUV path
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(a) Survey in the 18th of July 2022.

(b) Survey in the 11th of August 2022.

(c) Simulation under experiment conditions.

Fig. 24: Two experimental surveys and a simulated scenario under experimen-
tal conditions with AUV trajectory (red) tracking the front (black line) in the
chlorophyll a map (blue-yellow).

resembles a sinusoid around the front. In the previous section,
we mentioned that the front tracking error in simulations is
due to the AUV turning radius and the delay introduced by the
update function of the gradient estimator. Here, beyond those
factors, we also have introduced a look-up table to simulate the
sensor that consists of the chlorophyll a concentration dataset,
which has been scaled 100 fold. Considering that, if we
compare the results of the previous section and the simulated
scenario, the overshoot always tends to be approximately
10 meters. We can further understand the implications of
these overshoots by analyzing the chlorophyll a concentration
tracking error in Fig. 27. Here, the overshoots and undershoots
in chlorophyll a concentration correspond to the overshoots
and undershoots in the distance while tracking the front.
Bringing our attention to the gradient estimation, even with a
jittery trajectory, the gradient error - the difference between the
true gradient and estimated gradient - always seems below 90
degrees for all cases. For a more detailed analysis, in Fig. 28,
we can see how the estimated gradient resembles a low-pass
filtered version of the true gradient with very high frequencies.

In the second zoom-in in Fig. 26, we evaluate the perfor-
mance of the control law and its components. Here we note
that the control law’s seek and follow components match the

jittery trajectory. The follow component tends to be parallel
to the front, pointing forward, and the seek component tends
towards the front. Analysing Fig. 29, we can see how the
over and undershoots correspond to times where seek is the
dominating component.

VI. CONCLUSIONS AND FUTURE WORK

We considered the problem of how to use satellite data to
improve adaptive sampling missions of an AUV equipped with
a chlorophyll a sensor and how to design a survey in the
Baltic Sea to test our approach. We developed the adaptive
sampling algorithm and software packages to build a solution
for the environmental sampling problem. Our solution uses
GPs to model chlorophyll a fronts using satellite data and
integrates such model into a front tracking algorithm. This
integration is done using the estimate of the chlorophyll a
gradient field in the control law. We confirmed the goodness
of fit of the GP model by using scattered data points from a
higher resolution satellite data and were able to reconstruct the
chlorophyll a field using the GP model. We implemented the
developed algorithm in the AUV’s software and ran realistic
simulations using the model of our AUV and chlorophyll a
sensor model. These simulations resulted in accurate front
tracking with low gradient estimation error. We considered
the two most important performance metrics for our objective
to be gradient estimation errors and front tracking errors. Con-
cerning these metrics, the sensor noise analysis indicated that
the gradient estimation using GP results in smaller errors than
when using LSQ, mainly when the sensor noise is bigger or
equal to 0.01mg/m3, which corresponds to most chlorophyll a
concentration sensors in the market. We did not consider other
performance metrics, such as time of computation, because
both methods appeared fast enough to generate an estimate in
real time. We also did not consider the computation time for
model fitting prior to the survey as it’s not running in real-time
and thus not affecting performance. However, for some appli-
cations with fast-changing environments, it could be relevant
to train the model during the survey. The GP estimator requires
a GP model to be fit prior to the mission, which takes a few
minutes, as opposed to the LSQ algorithm, which requires
no prior fitting. After the development, implementation, and
sensitivity analysis, we designed a survey in the Baltic Sea,
near Stockholm, next to the island of Djurö. Similarly to the
simulations, the experiments confirmed that the algorithm and
software package work as desired in a controlled environment.

The work in this paper suggests several extensions, from
theory to implementation. Starting with more theoretical con-
tributions, it should be noted that our approach was developed
for front tracking. Though it cannot directly be used for other
applications such as source tracking, zig-zagging around the
front, or other movements, the control law can be adapted for
such applications. Another interesting extension to consider is
the multi-agent scenario. This includes modifying the control
law according to the neighbor agents and using the joint
variance given by the GP model. Then the agents would
be able to make more informed decisions regarding area
coverage, knowing the areas with the highest variance. A
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(a) Survey in the 18th of July 2022. (b) Survey in the 11th of August 2022. (c) Simulation under experiment conditions.
Fig. 25: Trajectory of the AUV (red) tracking the front (black line), with arrows representing the true and estimated gradient.

(a) Survey in the 18th of July 2022. (b) Survey in the 11th of August 2022. (c) Simulation under experiment conditions.
Fig. 26: Trajectory of the AUV (red) tracking the front (black line), with arrows representing the true and estimated gradient.

(a) Survey in the 18th of July 2022. (b) Survey in the 11th of August 2022. (c) Simulation under experiment conditions.
Fig. 27: Concentration of chlorophyll a: measurements from the AUV, and reference value.

(a) Survey in the 18th of July 2022. (b) Survey in the 11th of August 2022. (c) Simulation under experiment conditions.
Fig. 28: Gradient of chlorophyll a: AUV estimated gradient, and true gradient.

(a) Survey in the 18th of July 2022. (b) Survey in the 11th of August 2022. (c) Simulation under experiment conditions.
Fig. 29: Control law components: seek and follow.
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contribution that follows directly from multi-agent systems is
data assimilation using the data collected by the multi-agent
system. This data could fit a GP model that informs algae
population models through physics-informed learning. On the
implementation side, future work would include integrating the
algae sensor into an AUV, tuning it in a controlled setting, and
running experiments with the complete system. One relevant
contribution would be to work towards a higher degree of
autonomy. There are several steps to reach a level of robustness
sufficient for real-world deployment of higher autonomy. Some
of them are reliable collision avoidance for islands, boats, and
people, robust autonomous dock-in for charging, and a cloud-
based data storage solution.
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