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Abstract. In this paper we consider the problem of tracking a mobile
target using adaptive estimation while circumnavigating it with a system
of Unmanned Surface Vehicles (USVs). The mobile target considered is
an irregular dynamic shape approximated by a circle with moving centre
and varying radius. The USV system is composed of n USVs of which
one is equipped with an Unmanned Aerial Vehicle (UAV) capable of
measuring both the distance to the boundary of the target and to its
centre. This USV equipped with the UAV uses adaptive estimation to
calculate the location and size of the mobile target. The USV system
must circumnavigate the boundary of the target while forming a regular
polygon. We design two algorithms: One for the adaptive estimation of
the target using the UAV’s measurements and another for the control
protocol to be applied by all USVs in their navigation. The convergence
of both algorithms to the desired state is proved up to a limit bound.
Two simulated examples are provided to verify the performance of the
algorithms designed in this paper.

1 Introduction
The use of unmanned vehicles has allowed higher levels of precision and cost effi-
ciency in many research expeditions [1]. It is particularly relevant in challenging
or hazardous environments, and if real-time data exchange is required [2]. The
solution of the future relies on the connection of different types of unmanned
vehicles. In [3] it is stated that autonomous systems are becoming more pow-
erful and utilise the capabilities of several types of devices such as Unmanned
Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The opportu-
nity for coordinated and interconnected operations is clear. Hence, we believe a
good solution relies on a coordinated and interconnected system of USVs and
one UAV and using an adaptive protocol. In [4] a path following algorithm is
proposed for formation control of a multi-agent system. The authors prove that
if the tracking errors are bounded, their method stabilises the formation error.
However, it is assumed that there is perfect information on the path to follow.
For our problem, we would like to estimate the target, design the path and con-
trol the multi-USV system. In [5], [6] and [7] a control law for distance-based
formation control which guarantees stability is proposed. Also in section 6.3.1
of [8], where target tracking is considered, they use distance-based formation
control. However, a distance-based protocol can not fit into our target tracking
problem since it does not use global information. In [9] a protocol for target
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tracking in 3D is designed with guaranteed collision avoidance. However, it is
assumed that the target is a fixed object that may move and rotate but never
change its shape, which is different from our case. In [10] and [11], controllers
are synthesised for a swarm of agents to generate a desired two-dimensional ge-
ometric pattern specified by a simple closed planar curve. It is assumed that the
shape is given to the swarm and not estimated in real-time. This is not true
for our case. A closely related work [12] proposed one adaptive protocol to cir-
cumnavigate around a moving point, e.g., the fish tracking problem. They used
adaptive estimation for point tracking with known constant distance. We shall
extend this to circumnavigation of circular shapes.

The main contribution of this paper is the original setup, the estimation
protocol, the control algorithm and the convergence and numerical results. The
setup of this paper consists on a multi-USV system paired up with an UAV.
This setup intends to construct a powerful system by using the unique capa-
bilities of each type of autonomous vehicle such that we can both analyse the
target and USV’s location (using the UAV) but also analyse the different fronts
of the target (using the USVs). The estimation protocol we developed estimates
the target centre and radius for each time instance in real time. We use adap-
tive filtering that relies on the distance measurements collected by the UAV,
assuming its movement is persistently exciting for all time. The control algo-
rithm we propose for each USV gives us mathematical guarantees of bounded
convergence to the target and to equally spaced positions along it, accounting
for physical restrictions for implementation. We simulated this proposed system
using a man made random data set to represent a circular target. The current
paper significantly extends our IROS 2019 publication [13], which focuses on
how to circumnavigate an algal bloom shape. In both we wish to track a circular
shape but the assumptions, methods and results are different. In our previous
paper, we assumed that all USVs are able to measure only the distance to the
boundary. The algorithm was based on least squares optimisation for estimating
the circle and we apply the controller to an algal bloom data set. Whereas on
the present paper we assume only one sensing USV that measures distance to
the boundary as well as centre and our algorithm uses adaptive estimation.

The remaining sections of this paper are organised as follows. In Section 2,
the main problem of interest is formulated. It is divided in system description
and problem formulation. The main results are presented in Section 3, where the
adaptive estimation and control algorithm are derived. In Section 4 we present
the proofs of convergence. Simulations presenting the performance of the pro-
posed algorithm are given in Section 5. It is divided in simulations with and
without p.e. guarantees. Concluding remarks and future directions come in Sec-
tion 6.

2 System description and problem formulation
In this paper we consider the problem of tracking a shape using a multi-USV
system and an UAV. This shape may be very irregular over time. We assume the
shape is close to a circle as seen in Fig. 1. The UAV provides an initial image of
the target which confirms such assumption and helps us deploy the USVs.
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Fig. 1: 4 USVs circumnavigating a circular algal bloom

2.1 System description

We define this circle as (c(t), r(t)) ∈ R3, where c(t) = (x(t), y(t)) and r(t) are
the centre and the radius of the circle, respectively. We denote (ĉ(t), r̂(t)) ∈ R3

as the estimation of the circle attributes. Then the UAV would provide initial
estimates ĉ(0) = (x̂(0), ŷ(0)) and r̂(0).

This UAV obtains data from the target and shares it with the USVs so
they can move towards the target. The UAV constantly measures its distance
from the target, calculates its target estimates and shares it with all USVs. The
measurements consist of its distance to the centre and to its boundary. Each
USV has access to its GPS position and to the GPS position of the USV in front
of it, counterclockwise with respect to ĉ(t).

The multi-USV system will jointly circumnavigate the target and provide
real time information of different fronts. We define we have n USVs and, using
the UAV information, they are initialised at positions pi(0), i ∈ [1, ..., n], which
are outside of the shape and form a counterclockwise directed ring on the surface.
The kinematic of the USVs is of the form

ṗi = ui, i ∈ [1, ..., n], (1)

where pi is a vector that contains the position pi = [xi, yi]
> ∈ R2 and

ui ∈ R2 is the control input.
In order to avoid the USVs concentrating in some region, in which case they

may loose information on other fronts, we would like to space them equally
along the defined circle. Therefore, we define that the counterclockwise angle
between the vector pi − ĉ and pi+1 − ĉ is denoted as βi = ∠(pi+1 − ĉ,pi − ĉ)
for i = 1, . . . , n − 1, and the angle between pn − ĉ and p1 − ĉ is denoted as
βn = ∠(p1 − ĉ,pn − ĉ) = ∠(p1 − ĉ,pn − ĉ), Notice that in this case, βi(0) ≥ 0
and

∑n
i=1 βi(0) = 2π. This is represented in the left scheme of Fig. 2.

Note that the `2-norm is denoted simply as ‖ · ‖ without a subscript. Now
we can define the distance from the UAV to the centre and the boundary of the
target circle as

Dc
1(t) = ‖c(t)− p1(t)‖

Db
1(t) = |r(t)−Dc

1(t)|,
(2)

respectively. Note that this UAV is capable of sensing the distances to the target
but then calculates the target estimates. This UAV operation is represented in
the left part of Fig. 3.

After obtaining the target estimates, each USV i would be able to calculate
its own distances D̂c

i (t) = ‖ĉ(t)−pi(t)‖ and D̂b
i (t) = |r̂(t)−D̂c

i (t)| as represented
in the right scheme of Fig. 2. We summarise each USVs’ scheme of computation
in the right part of Fig. 3.
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Fig. 2: (Left) System with vehicles A1, A3, A5, A8 at positions p1, p4, p3, p2,
respectively. (Right) Estimated ĉ, r̂, real c, r and angle βi between two vehicles
at pi+1 and pi.

Fig. 3: The UAV estimates the centre and radius of the target using its distance
measurements and shares it with all USVs. Each USV i calculates its control
protocol.

2.2 Problem formulation

Definition 1 (Circumnavigation). When the target is stationary, i.e., c and
r are constant, circumnavigation is achieved if the USVs

1. move in a counterclockwise direction on the boundary of the target, and
2. are equally distributed along the circle, i.e., βi = 2π

n .

More precisely, we say that the circumnavigation is achieved asymptotically if
the previous aim is satisfied for t → ∞. For the case with time-varying target,
we assume that ‖ċ‖ ≤ ε1 and |ṙ| ≤ ε2 for some positive constant ε1 and ε2.

Now we are ready to pose the problem of interest.

Problem 1. Design a UAV estimator for c(t) and r(t) when distance mea-
sures (2) are available to the UAV, and design the control input ui for the USVs
such that for some positive ε1, ε2 we have ‖ċ‖ ≤ ε1 and |ṙ| ≤ ε2. Then, there
exist positive K1, K2 and K3 satisfying

lim sup
t→∞

‖ĉ(t)− c(t)‖ ≤ K1ε1, lim sup
t→∞

|r̂(t)− r(t)| ≤ K2ε2,

lim sup
t→∞

|D̂c
i (t)− r̂(t)| ≤ K3ε2,

lim
t→∞

βi(t) =
2π

n
.
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3 Adaptive estimation and control algorithms
In this section, we propose an estimation and control mechanism for Problem 1.
We consider n USVs at positions pi and one UAV which is capable of measuring
its distance Db

i to the target boundary as well as its distance Dc
i to the target

centre. Then, it should estimate (c, r) from its distance measures, i.e. Db
i and

Dc
i , and share the information with the USVs. Each USV calculates its desired

velocity taking into account its angle βi to the next USV as well as its distance
to the target centre and boundary, obtained with the estimates of the target.

3.1 Adaptive estimation

This subsection relates to the protocol followed by the UAV for estimation.
Recalling Fig. 3, we will construct the UAV estimator block. Motivated by [12],
we propose the following adaptive estimation of the radius r(t) of the target
using the UAV A1 in position p1. Observe that

d

dt
(Db

1)2 = 2(ṙ − Ḋc
1)(r −Dc

1). (3)

Assume the estimate of r is denoted as r̂, we have
1

2

( d
dt

(Db
1)2 − d

dt
(Dc

1)2
)

+ Ḋc
1r̂ = Ḋc

1(r̂ − r) + ṙ(r −Dc
1). (4)

Then for some positive constant γ the dynamic

˙̂r = −γḊc
1

[1
2

( d
dt

(Db
1)2 − d

dt
(Dc

1)2
)

+ Ḋc
1r̂
]

(5)

can estimate the variable r under the persistent excitation condition on Ḋc
1.

Persistent excitation plays a key role in establishing parameter convergence in
adaptive identification [14,15].

Definition 2. (Continuous time persistent excitation condition) [15] The func-
tion f ∈2e (Rn) is said to be persistently exciting (p.e.) if there exist positive
constants ε1, T such that for all τ > 0,∫ T+τ

τ

f(t)f(t)>dt > ε1In.

T will be termed an excitation period of f .

Indeed, in this case d
dt (r̂− r) = −γ(Ḋc

1)2(r̂− r)− ϑṙ, where ϑṙ = ṙ(γḊc
1(r−

Dc
1) + 1) is bounded by M1ε2. Indeed all its elements are bounded by M1 and

recall that |ṙ| ≤ ε2. Note that r−Dc
1 is bounded because r and Dc

1 are bounded as
well. Furthermore, as it will be clear soon, ϑṙ can be replaced by ϑṙ = ṙ(γV (r−
Dc

1) + 1) using equation (8), where V is the bounded estimate of Ḋc
1.

However, the implementation of (5) needs the derivative of Db
1 and Dc

1 which
is not desired. It would require explicit differentiation of measured signals with
accompanying noise amplification. Thus, for some positive constant α we adopt
the state variable filtering and then design the estimator as follows

η(t) = ż1 = −αz1(t) +
1

2
(Db

1)2 (6)

m(t) = ż2 = −αz2(t) +
1

2
(Dc

1)2 (7)

V (t) = ż3 = −αz3(t) +Dc
1 (8)
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with initial conditions z1(0) = z2(0) = z3(0) = 0. Now together the above
dynamics, the estimator for r is given as

˙̂r = −γV
[
η −m+ V r̂

]
. (9)

Now we need to know c(t) but we only know Dc
1(t) and Db

1(t). Thus, we must
use again adaptive estimation for the centre c(t) of the target. Observe that

d

dt
(Dc

1)2 = 2(ṗ1 − ċ)>(p1 − c). (10)

Assume the estimation of c is denoted as ĉ, we have

1

2

( d
dt

(Dc
1)2 − d

dt
‖p1‖2

)
+ ṗ>1 ĉ = ṗ>1 (ĉ− c) + ċ>(c− p1). (11)

Then the dynamic

˙̂c = −γṗ1

[1
2

( d
dt

(Dc
1)2 − d

dt
‖p1‖2

)
+ ṗ>1 ĉ

]
(12)

can estimate the parameter c under some persistent excitation condition on ṗ1.
Indeed, in this case d

dt
(ĉ− c) = −γ‖ṗ1‖2(ĉ− c)− ϑċ, (13)

where ϑċ = γċ>ṗ1(c− p1) + ċ is bounded by M2ε1. Indeed all its elements are
bounded by M2 and recall that |ċ| ≤ ε1. Note that c − p1 is bounded because
c and p1 are within a finite map. Furthermore, as it will be clear soon, ϑċ can
be replaced by ϑċ = γċ>V2(c − p1) + ċ using equation (15), where V2 is the
estimate of ṗ1 and it is bounded.

However, the implementation of (12) needs the derivative of p1(t) and Dc
1(t)

which is not desired. Therefore we use the previously defined equation (7) for
Dc

1(t) and redefine it as η2(t) = ż2 and add the following filter

m2(t) = ż4 = −αz4(t) +
1

2
p1(t)pT1 (t) (14)

V2(t) = ż5 = −αz5(t) + p1(t) (15)

with initial conditions z4(0) = z5(0) = 0. Now together the above dynamics, the
estimator for c is given as

˙̂c = −γV2
[
η2 −m2 + V T2 ĉ

]
. (16)

3.2 Control algorithm

This subsection relates to the protocol followed by the USVs for control. Recall-
ing Fig. 3, we will construct the USV control block. Therefore, we want to obtain
the desired control input ui(t) using the previously measured and estimated vari-
ables. The total velocity of each USV comprises of two sub-tasks: approaching
the target and circumnavigating it. Therefore we define the direction of each
USV towards the estimated centre of the target as the bearing ψi(t),

ψi(t) =
ĉ(t)− pi(t)

D̂c
i (t)

=
ĉ(t)− pi(t)

‖ĉ(t)− pi(t)‖
. (17)

The first sub-task is related to the bearing ψi(t) and the second one is related

to its perpendicular, Eψi(t). We define a rotation matrix E =

[
0 1
−1 0

]
.
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Then, let us first consider the control law ui where δ is a parameter to be
defined.

ui = ˙̂c + ((D̂c
i − r̂)−

1

δ
˙̂r)ψi + βiD̂c

iEψi (18)

The control actuation of a USV is limited, therefore we have to make sure
that the implemented control is within the actuation bounds and so we introduce

ui = δui (19)
where δ is the same as before. For a specific ui it is possible to have ui within

some specified bounds.

4 Convergence results
In this section we prove that the estimator and control algorithm proposed in
the previous section converge to the desired behaviour.

Theorem 1. The initial condition satisfies D̂c
i (0) > r̂(0) > 0. Suppose ṗ1(t)

and Ḋc
1(t) are p.e., ‖ċ‖ ≤ ε1, and |ṙ| ≤ ε2. Consider the system (1) with the

control protocol (19), and the initialisation satisfying ‖pi(0) − ĉ(0)‖ > 0, then
there exists K1, K2 and K3 such that circumnavigation of the moving circle with
equally spaced USVs can be achieved asymptotically up to a bounded error, i.e.

lim sup
t→∞

‖ĉ(t)− c(t)‖ ≤ K1ε1, (20)

lim sup
t→∞

|r̂(t)− r(t)| ≤ K2ε2, (21)

lim sup
t→∞

|D̂c
i (t)− r̂(t)| ≤ K3ε2, (22)

lim
t→∞

βi(t) =
2π

n
. (23)

Proof. The proof is divided into three parts. In the first part, we prove that
(20) and (21) hold. In the second part, we prove that the estimated distance
D̂c
i converges to the estimated radius r̂, or in other words, that (22) holds. In

the last part, we show that the angle between the USVs will converge to the
average consensus for n USVs, βi = 2π

n , meaning (23) holds. We will assume the
implementable controller is given by Ui = δui.

1. Firstly, we prove that (20) and (21) hold. The proof for boundedness of the
centre (20), can be found on [12], Proposition 7.1. The proof for boundedness
of the radius, however, needs to be derived in this paper. Then, we have that

˙̃r = ˙̂r = −γV
[
η −m+ V r̂

]
= −γV

[
η −m+ V (r̃ + r)

]
= −γV 2r̃ − γV

[
η −m+ V r

]
= −γV 2r̃ +G(t)

where G(t) = −γV
[
η − m + V r

]
. We know that |G(t)| ≤ k1ε2 for some

k1, ε2 ≥ 0 because V is bounded and that |η −m + V r| < k2 we can prove
that for a Lyapunov function Wr = 1

2 r̃
2 we get

Ẇr = r̃ ˙̃r = r̃(−γV 2r̃ +G(t)) = −γV 2r̃2 + r̃G(t)

≤ −γV 2r̃2 + k1ε2r̃

then we get that for Ẇr ≤ 0 to hold, −γV 2r̃2 + k1ε2r̃ ≤ 0 must hold. So, we
have that when r̃ ≥ k1ε2

γV 2 or r̃ ≤ −k1ε2γV 2 , Ẇr ≤ 0 so that |r̃| is within ±k1ε2γV 2 .

This error r̃ is then proved to converge asymptotically to a ball since Ḋc
1 is

p.e.
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2. We prove that all USVs reach the estimate of the boundary of the moving
circles asymptotically, i.e., limt→∞ ‖pi(t)− ĉ(t)‖ = limt→∞ D̂c

i (t) = r̂(t), so

(22) holds. Consider the function Wi(t) := D̂c
i (t)− r̂(t) whose time derivative

for t ∈ [0,+∞) is given as

Ẇi =
(ĉ− pi)

>( ˙̂c− ṗi)

D̂c
i

− ˙̂r

=− (ĉ− pi)
>

D̂c
i

δ((D̂c
i − r̂ −

1

δ
˙̂r)ψi + βiD̂c

iEψi)− ˙̂r

=− (ĉ− pi)
>

D̂c
i

ψiδ(D̂
c
i − r̂ −

1

δ
˙̂r)− (c− pi)

>

D̂c
i

EψiδβiD̂
c
i − ˙̂r

=− δ(D̂c
i − r̂ −

1

δ
˙̂r)− ˙̂r = −δWi.

Hence for t ∈ [0,+∞), we have D̂c
i (t) = δWi(0)e−t + r̂(t) which implies Wi

is converging to zero exponentially.
3. Finally, we show that the angle between the USVs will converge to the aver-

age consensus for n USVs, βi = 2π
n , so (23) holds. Firstly, note that we can

write an angle between two vectors βi = ∠(v2, v1) as

βi = 2 atan2((v1 × v2) · z, ‖v1‖‖v2‖+ v1 · v2) (24)

and its derivative as

β̇i =
v̂1 × z
‖v1‖

v̇1 −
v̂2 × z
‖v2‖

v̇2 (25)

where z = v1×v2
‖v1×v2‖ , v̂i = v1

‖vi‖ , i = 1, 2.

Then, for v1 = pi − ĉ and v2 = pi+1 − ĉ we get

β̇i =
v̂1 × z
‖v1‖

v̇1 −
v̂2 × z
‖v2‖

v̇2

=
v̂1 × z
‖v1‖

δ((D̂c
i − r̂ − ˙̂r)ψi + βiD̂c

iEψi)

− v̂2 × z
‖v2‖

δ((D̂c
i+1 − r̂ − ˙̂r)ψi+1 + βi+1

ˆDc
i+1Eψi+1)

= δ(−βi + βi+1), i = 1, . . . , n− 1

β̇n = δ(−βn + β1).

which can be written in a compact form as

β̇ = −δB>β (26)

where B is the incidence matrix of the directed ring graph from v1 to vn.
First, we note that the system (26) is positive (see e.g., [16]), i.e., βi(t) ≥ 0 if
βi(0) ≥ 0 for all t ≥ 0 and i ∈. This proves the positions of the USVs are not
interchangeable. Second, noticing that B> is the (in-degree) Laplacian of the
directed ring graph which is strongly connected, then by Theorem 6 in [17],
β converges to consensus 2π

n 1. �
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Remark 1. Note how the USV Ai will necessarily maintain its relative position
pi throughout the circumnavigation mission. In fact, we can prove that USV Ai
is always in position pi.

Remark 2. Note that the p.e. condition is assumed for Theorem 1 and not
proved. However, in the results section we will verify if the p.e. assumptions
are true for our simulations, within the simulation time.

5 Numerical results

In this section, we present simulations for the protocol designed in Section 3.
We use the derived method for estimation of the target (9) and (16) and the
controlling protocol for the USVs (18). For this section, we discretize the whole
algorithm to be able to use it computationally. The first subsection takes into
account the persistent excitation condition and the second subsection analyses
what happens when this condition is not verified.

5.1 Simulations with p.e. guarantees

In this subsection, we simulate a moving target with initial position (x(0), y(0)) =
(25, 25), radius r(0) = 10 and dynamic according to

x(t+ 1) = x(t) + α1(t) + 0.5

y(t+ 1) = y(t) + α2(t) + 0.5

r(t+ 1) = r(t) + α3(t).

(27)

However, we simulate that the UAV will provide as an initial noisy estimate of
(x̂(0), ŷ(0)) = (25, 25), radius r̂(0) = 20. Note that at time t = 0 the radius
estimate is double the real radius.

Fig. 4: Time-lapse of four USVs (blue rectangles) circumnavigating a moving
target (red) with representation of their paths (green)
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Fig. 5: First and second row: real and estimated target’s centre c : x, y and radius
r. Third row: tracking error of USV A1, Db

1 and angle β1. Fourth row: control
input of USV A1, u1 : x, y

Here, αi(t) is a random scalar drawn from the uniform distribution within
the interval of [−0.5, 0.5] for i = 1, 2, 3. For this generated target we got the
following results. In Fig. 4 the USVs circumnavigate the moving target. In Fig.
5 we have 7 plots. On the first and second row we compare the real and estimated
target. Note that the estimate of the centre ĉ(x̂, ŷ) has an estimation error of
up to 2 units. Also note that the estimate of the radius r̂ is composed of two
instances. In the first, the initial estimate provided by the UAV was very noisy
and so we can see the estimate converging rapidly to a more accurate estimation.
In the second we can see an estimation error of up to 2 units.

On the third row left column, we can see the distance Db
i of each target to

the boundary of the target - the perfect tracking would result in a distance Db
i

of 0 for all USVs, for every time step. Here we have an error of up to 0.5 units,
except for the very beginning where the error can reach 10 units. This is merely
because in the beginning the USVs are far away from the target. On the third
row right column, we have the angle between USV A1 and A2, β1. Having 4
USVs, the perfect tracking would result in 2π/4 = π/2 ≈ 1.57 for all USVs, for
every time step. We can see this reference as the red line in the plot so we see
that, for USV A1, the error is up to 0.2 radians.

Finally, on the fourth row we have the control input of USV A1, both in x and
y in blue. Recall Remark. 2 where we stated that, for a practical implementation,
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there should be a maximum velocity umax. For this case study we defined that
umax = 1.5 and we plotted this limit in red. Note how the control input stays
within the limit values 1.5 and -1.5.

Since we considered as an assumption that ṗ1(t) and Ḋc
1(t) are p.e., we will

evaluate whether they hold for this simulation example. According to [18], we
can adapt Definition 2. to the discrete time case so we obtain the functions

fṗ1
(t) =

t+m∑
k=t

ṗ>1 (k)ṗ1(k), fḊc
1
(t) =

t+m∑
k=t

Ḋc
1(k)2, (28)

which must fulfill ρ2 > fṗ1
(t) > ρ1 and ρ4 > fḊc

1
(t) > ρ3 for positive ρi.

Fig. 6: First row: fṗ1(t) is bounded by strictly positive bounds. Second row:
fḊc

1
(t) is bounded by strictly positive bounds.

As seen in Fig. 6., these conditions are fulfilled for ρ1 = 1.1026, ρ2 = 6.8371,
ρ3 = 0.2443 and ρ4 = 8.8497. Then, for these results in this simulating time
span, the p.e. conditions hold.

5.2 Simulations without p.e. guarantees

In this subsection, we simulate a static target with position (x(0), y(0)) = (25, 25)
and radius r(0) = 10. As in the previous subsection, we simulate that the UAV
provides an estimate of (x̂(0), ŷ(0)) = (25, 25) and radius r̂(0) = 20.

Fig. 7: Four USVs (blue rectangles) circumnavigating a moving target (red) with
representation of their paths (green)

As seen in Fig. 7, the estimation of the position seems correct but the esti-
mation of the radius seems wrong.
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Fig. 8: First and second row: real and estimated target’s centre c : x, y and radius
r. Third row: tracking error of USV A1, Db

1 and angle β1. Fourth row: control
input of USV A1, u1 : x, y

Fig. 9: First row: fṗ1(t) is bounded by strictly positive bounds. Second row:
fḊc

1
(t) is bounded by a strictly positive bound and zero.

From the first row Fig. 8 we can see how the estimates for the centre c(x, y)
are correct for all the simulation time. However, from the second row we can see
a steady state error for the estimation of r. Recall that the estimators derived
in Section 3 for c and r rely on the p.e. conditions for ṗ1 and Ḋc

1, respectively.
Then, it seems that the p.e. condition on Ḋc

1 does not hold, and, therefore, the
estimation of r does not convergence to the real r. In fact, observing Fig. 9 we
can conclude that, for this simulation time, even though the p.e. condition is
verified for ṗ1, it is not verified for Dc

1 since for some time t the minimum bound
is not strictly positive.



Cooperative circumnavigation 13

6 Conclusions

We designed an algorithm that guarantees circumnavigation of an irregular shape
approximated by a circle up to a bounded error. The algorithm relies on one UAV
and a number of USVs according to the size of the target and to the importance
of monitoring its fronts. Then, the proposed control protocol was proven to
converge up to a bounded error assuming ṗ1(t) and Ḋc

1(t) to be p.e.
As future work, we would like to exploit the circumnavigating USVs as in-site

measuring vehicles. In order to do so, we are studying the hypothesis of using
USVs capable of measuring the concentration of algal. This applies for the case
in which we wish to monitor harmful algal blooms.
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