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Abstract— In this paper we propose a method that uses
satellite data to improve adaptive sampling missions. We find
and track algal bloom fronts using an autonomous underwater
vehicle (AUV) equipped with a sensor that measures the
concentration of chlorophyll a. The proposed method learns
the kernel parameters of a Gaussian process model using
satellite images of chlorophyll a from previous days. Using
locally collected data, the AUV estimates the chlorophyll a
concentration online. The algal bloom front estimate is fed to
our motion control algorithm. The performance of this method
is evaluated through simulations using a real dataset of an algal
bloom front in the Baltic. We consider a real-world scenario
with sensor and localization noise and with a detailed AUV
model.

I. INTRODUCTION

We develop an adaptive sampling approach using an
autonomous underwater vehicle (AUV) and satellite data
to monitor algal blooms. Algal blooms can cause human
illness and large scale mortality of fish [1]. The scenario
is illustrated in Fig. 1, in which the AUV and available
satellite data are highlighted. The algal blooms satellite
data is obtained from the Copernicus Marine Environment
Monitoring Service (CMEMS) [2]. Algal blooms occur nat-
urally in the sea. However, when algae colonies experience
abnormal growth, which can result in the production of
harmful toxins [3], they are called harmful algal blooms. In
the Baltic Sea, this is due to excessive nutrient input mainly
attributed to human pollution. [4]. Motivation to monitor
algal blooms is due to its recent increase in frequency,
intensity, and geographical distribution in parallel with the
increased utilization of coastal waters for aquaculture [5].
There is significant scientific and societal interest in devel-
oping systems for automated surveillance and monitoring of
algal blooms. Traditional methods for observation, such as
satellite imaging or ship-towed sensors, are generally unable
to provide measurements at the spatial and temporal reso-
lutions required to understand the detailed dynamic ocean
phenomena [6]. While remote sensing with satellites can
offer a first guess, such data is weather-dependent and prone
to false positives in turbid coastal waters [7]. Therefore, we
propose the use of AUVs that can sense water parameters
at higher resolutions and coverage than research vessels and
buoys, at a reduced risk and cost. In fact, AUVs can perform
measurement runs over a long period of time at sea [8],
which makes them a suitable choice for oceanographic data
collection [9].
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Fig. 1: System overview for algal blooms monitoring based on AUV and
satellite data.

There has been a significant amount of work in develop-
ing solutions for autonomous ocean sampling. A common
approach in the literature is open-loop techniques with a
fixed sampling pattern. A widely used sampling pattern is the
lawn-mower [10] which has been used for both single-agent
[11] and multi-agent [12] cases. Other relevant methods
include the spiral and circular patterns in [13]. While these
open-loop strategies guarantee coverage of survey areas, they
do not react or respond to changes in the environment or the
features that are being observed. In such cases, one needs to
close the loop. Adaptive sampling is such a closed-loop con-
trol in which an agent autonomously makes decisions during
a mission in response to environmental changes [14], [15].
As reviewed in [16], adaptive sampling can be divided into
three distinct objectives: source localization, front determi-
nation, and tracking and mapping. Different types of targets
can be considered: thermoclines, algal blooms, oils spills,
etc. In addition, using different vehicles can be deployed:
single-agent, multi-agent with leader-follower, cooperative
multi-agent, etc. Similar to this paper, an adaptive sampling
algorithm that augments a standard Gaussian process (GP)
with a nearest neighbors prior is proposed in [17]. Unlike
our approach however, [17] does not use external data to
aid the vehicle’s decisions. One essential problem is how to
aid ocean sampling missions with external data. An early
approach uses predictive ocean models to assist in solving
the motion planning problem of steering an AUV to a desired
location [18]. Here, it is assumed that there is a prediction
for the day of the mission, which is not available in this
paper’s scenario. Another related result uses knowledge from
previous missions to create a model [19].

The main contribution of this paper is a system for algal
bloom front tracking comprising a GP model estimator, a
gradient estimator, and a motion controller. The GP model
estimates the chlorophyll a concentration field using satellite
data and is updated in real time by conditioning it on the
measurements collected by the AUV. The gradient estimator
derives the gradient of the chlorophyll a concentration field.
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Fig. 2: System architecture with its main components: satellite data, GP
model estimator, gradient estimator, motion controller, and AUV.

The motion controller implements a path-planning guidance
law for adaptive sampling using the estimated chlorophyll a
concentration and field gradient. We run an experimental
evaluation in a simulated environment that highlights the
performance of the estimators and controller, considering
sensor noise and detailed AUV model.

The paper is organised as follows. In Section II, we in-
troduce the proposed front tracking algorithm. This includes
the system architecture, the satellite data, the GP model for
the chlorophyll a concentration, the gradient estimator, the
motion controller, and the AUV model. In Section III we
analyse the performance of the algorithm with simulations
considering disturbances and noise. Concluding remarks and
future directions follow in Section IV.

II. ALGAL BLOOM FRONT TRACKING

This paper considers algal bloom front tracking as an
adaptive environmental sampling problem. The objective of
front tracking is to find and track a front with no global
information on the front’s location or shape, and only use
local information collected by the AUV itself, as it moves
to explore the map. Then, the AUV has to make the de-
cision of where to explore next given the information it
has collected so far. We approach this problem using an
AUV with a chlorophyll a sensor and remote satellite data
from CMEMS. Our solution consists of a novel system
architecture containing three main components, as seen in
the three green blocks of Fig. 2. They are a GP model
estimator, a gradient estimator, and a motion controller. In
the following subsections, we present the system architecture
and its components.

A. System Architecture

The system architecture is summarised in Fig. 2. Here,
we illustrate the main components of the proposed system,
from the AUV, to the motion controller, gradient estimator,
GP model estimator, and satellite data.

The AUV has a chlorophyll a sensor that measures
the chlorophyll a concentration at a set frequency, as it
moves in the field. The AUV movement is dictated by the
control command received from the motion controller. The
motion controller uses the AUV’s past measurements and
an estimation of the field gradient to calculate the control
command, closing the adaptive sampling loop. The gradient

Fig. 3: CMEMS data of chlorophyll a in the Baltic Sea (blue - yellow), and
land (dark grey).

estimator uses both the past measurements taken by the
AUV and a model of the chlorophyll a concentration field to
produce an estimate of the chlorophyll a concentration field
gradient. The GP model estimator uses the previous days of
satellite data to train kernel parameters of a GP model that
represents the field we want to estimate. Finally, the satellite
data consists of remote measurements of the chlorophyll a
concentration field from a number of days preceding the
mission and is used in the GP model estimator to generate
the GP model estimate of the chlorophyll a concentration
field.

B. Satellite Data

The satellite data concerns chlorophyll a concentration for
a given region. We denote this chlorophyll a concentration
field by δ(p), where δ denotes the chlorophyll a concen-
tration at position p. In this paper, we consider surface
data only. Fig. 3, shows a plot of sample chlorophyll a
concentration data, where high regions of high concentration
are highlighted in yellow and regions of low concentration
are highlighted in blue. The dark grey area represents the
land. This data has a spatial resolution of 2 km by 2 km and
is obtained from CMEMS [20]. The location is on the west
coast of Finland, near the coastal city Pori. We chose this
location because there’s a clear chlorophyll a bloom front
which we hypothesise is due to the nutrients that the river
Kokemäenjoki carries into the Baltic sea [21]. In this paper,
we’ll focus on the region marked by the red square taken
on the 17th of April 2021. We chose April because it is the
spring season of algal blooms.

C. GP Model Estimator

The GP model estimator models the chlorophyll a concen-
tration field δ̄(p) for the given region and time, exploiting
prior information from satellite data of the previous days and
measurements taken by the AUV in real time. Given this
application’s slow time scale, we assume that the chloro-
phyll a concentration fields at different days have identical
distributions, which simplifies model fitting and reduces the
computational complexity.

In order to obtain the chlorophyll a concentration model,
we must define the type of kernel that will accurately depict
the process. The kernel represents a priori knowledge about
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the process by specifying how the chlorophyll a concentra-
tion data is related to the corresponding spatial locations.
Among the multitude of kernels described in the literature,
only some fit the characteristics of the biogeochemical data
we consider. We use the Matérn kernel [22], which proves
to be capable of modelling different degrees of smoothness,
across both vertical and horizontal length scales [23]. The
covariance matrix K ∈ RN×N is defined with respect to
two points in the field map, xi and xj . Each element of
the matrix is computed by the kernel function k(xi, xj) for
which 1 ⩽ i, j ⩽ N . The kernel is defined as

Ki,j = k(xi, xj) = σ2
k(1 + r)e−r, (1)

where r2 = (xi − xj)
⊤M(xi − xj), with

M =
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The kernel hyper-parameters are (σ2
k, l0, l1), where σ2

k is
the variance of the chlorophyll a concentration process, and
(l0, l1) define the length scale in each dimension.

The kernel hyper-parameters, (σ2
k, l0, l1) are estimated by

maximising the log marginal likelihood of the prior distri-
bution - using only the available satellite data from previous
days. This data is called the training set, and consists of a
vector of size N containing positions in the chlorophyll a
concentration field X = [p1, ...,pN ], and their respective
chlorophyll a concentration value y = [δ1, ..., δN ]. The log
marginal likelihood to maximise is

log p(y|X) = (3)

− 1

2
y⊤(K + σ2I)−1y − 1

2
log |K + σ2I| − N

2
log 2π

where K is the N×N covariance matrix in which each value
is created as in (1), and σ is the noise variance of each data
point.

Using the trained kernel, the GP model can be fit with the
collected data, using the standard conditioning formulas [22]
to obtain the model for the chlorophyll a concentration
field, which we define as δ̄(p). In order to do that, we
consider the n most recent measurements taken by the AUV.
It contains the AUV’s positions P = [p1, ...,pn], and its
chlorophyll a concentration measurements ∆ = [δ1, ..., δn].
Then, the mean of the model δ(p) is denoted by δ̄(p) and
the covariance by cov(δ(p)). We can compute the mean and
covariance at some point p∗ as

δ̄(p∗) = K∗
(
K + σ2I

)−1
∆ (4)

cov(δ(p∗)) = K∗∗ −K∗
[
K + σ2I

]−1
KT

∗ (5)

where K ∈ Rn×n corresponds to the covariance between the
data in points P, K∗ ∈ R1×n corresponds to the covariance
between the data in points p∗ and P, K∗∗ = σ2 corresponds
to the variance at the point p∗, and σ2 is the variance of
the measurement noise. Since the set of the n most recent
measurements is changing in time, then our estimate δ̄(p∗)
is also changing in time.

D. Gradient Estimator

The gradient estimator derives the previously obtained
model of the chlorophyll a concentration to produce an
estimate of the chlorophyll a concentration gradient field.
From the equation (4), the gradient ∇δ̄(p∗) is obtained
by computing the derivative of the predicted chlorophyll a
concentration with respect to position p∗,

∇δ̄(p∗) = ∇p∗

[
K∗

(
K + σ2I

)−1
∆
]
. (6)

Since the second and third terms inside the gradient in (6)
are constant relative to p∗, we only need to compute ∇p∗K∗.
Each element of the K∗ matrix is given by (1), in which xi

corresponds to p∗ and xj corresponds to pj ∈ P. So we
take the derivative of k(p∗,pj) with respect to p∗,

∇p∗k(p∗,pi) = −σ2
ke

−rM(p∗ − pj),

where M and r are as in subsection II-C. Note that the
gradient of the kernel equation is not defined when the test
point in P is equal to the current position p∗. To account
for this, the current position p∗ is not included in P when
computing (6). Then the gradient estimate at position p∗ is

∇δ̄(p∗) = ∇p∗K∗
(
K + σ2I

)−1
∆. (7)

E. AUV

The AUV receives the control command u from the
motion controller, which is the reference for direction and
velocity. Then, the AUV turns this reference u into thrust
commands to its thrusters τC , using its internal lower-level
controller. For this AUV, we consider the 6DOF model
in which the state is the velocity vector given by ν =[
u v w p q r

]T
containing the translational and

rotational velocities. Note that these elements of the velocity
vector are directly influencing the AUV’s position p.

The dynamics of the AUV can be formulated as a nonlin-
ear system represented by a vectorial notation presented by
Fossen [24] as follows:

(MRB +MA)ν̇ + (CRB(ν) +CA(ν))ν+

D(ν)ν + g(η) = τC , (8)

where MRB is the rigid body mass and inertia matrix and
CRB is the matrix of Coriolis and centripetal terms on the
left hand side. MA and CA(ν) represent the effect of added
mass, D(ν) represents the damping matrix and g(η) is the
vector of gravitational and buoyancy forces and moments.
τC is a vector of external control forces based on the AUV’s
actuator configuration.

F. Motion Controller

The control law we propose is summarised in Fig. 4.
It relies on the chlorophyll a gradient ∇δ and the latest
chlorophyll a concentration measurement δ to produce a
control command u. First, we define a front as a level set of
a time-varying scalar field δ : R× R2 → R:

F (t) = {p ∈ R2 : δ(t,p) = δref}, (9)

where δref is some reference value, p the position and t time.

3



Gradient
Estimator

Motion
Controller

u 

δ 

∇δ 

p 

Fig. 4: Control architecture with the motion controller, the gradient estima-
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Fig. 5: Seek and follow components of the control law and gradient.

Assume that the reference value δref is known, then, we
used the previously developed control law as in [25]. There,
we define the control law as

u(t,p) = useek(t,p) + ufollow(t,p)

useek(t,p) = −αseek(δ(t,p)− δref)∇δ(t,p)

ufollow(t,p) = αfollowRπ/2∇δ(t,p),

(10)

where ∇δ is the gradient of δ with respect to p, Rπ/2 is a
mapping which rotates vectors by 90 degrees, and αseek and
αfollow are tunable parameters.

As seen in Fig. 5, the control law consists of two com-
ponents: useek, which controls the AUV towards the front
by following the gradient field, and ufollow which controls
the AUV to move along the front, perpendicularly to the
gradient field. By designing the control law with these
two components, we ensure convergence to the front [26].
Namely, note that if δ(t,p) ̸= δref , the useek component
grows proportionally to this difference, making seeking the
front a priority, comparing to following the front. On the
other hand, if the AUV is on the front, the most prominent
component becomes the ufollow.

III. EXPERIMENTAL EVALUATION

In this section, the proposed system architecture and its
corresponding control and estimation components are tested
in a scenario of an algal bloom front tracking mission. We
first define the experimental setup for this section and then
present and analyse the numerical results.

A. Experimental Setup

For this scenario, we consider the environment illustrated
in Fig. 3 in which we will deploy the AUV and track the
algal bloom front. Here, the chlorophyll a concentration
is represented by a map that goes gradually from high
concentration in yellow to low concentration in blue, these
values will be measured by the chlorophyll a concentration
sensor mounted on the AUV. More specifically, the simulated
mission will occur inside of the red square. The data we
use to simulate this environment has a spatial resolution of
300 m by 300 m [27], and the location is the same one as
the satellite data we considered earlier.

Fig. 6: CMEMS data of chlorophyll a concentration in the Baltic Sea (blue
- yellow), clouds and cloud coverage (black), and land (dark grey).

The source code that implements the algorithm is avail-
able as an open-source contribution on two repositories.
The first one is the Gaussian Processes for Adaptive Envi-
ronmental Sampling (GP4AES) library which includes the
GP model estimator, the gradient estimator, and the mo-
tion controller https://github.com/JoanaFonsec/
gp4aes. The second one is the ROS [28] interface
which uses the GP4AES library and handles the connec-
tion with the AUV’s software https://github.com/
JoanaFonsec/algalbloom-tracking.

The simulation starts by deploying the AUV close to the
front and providing it an initial gradient estimation. When the
AUV is near the front, the gradient estimation is triggered.
The AUV speed is fixed to 1 m/s. For that reason, we are
interested only in the ratio of αseek and αfollow, and thus the
latter is set to 1. Moreover, we consider δref = 7.45 mg/m3,
based on the available satellite data. While tracking the front,
the AUV collects a measurement at f = 1 Hz, considering
a standard deviation of the measurement noise of σ =
10−3 mg/m3. The measurements are filtered using a weighted
moving average filter of size 3, with w = [0.2, 0.3, 0.5]:

δfiltered(t) = w−2δ(t− 2) + w−1δ(t− 1) + w0δ(t). (11)

With the same sampling rate, the gradient is estimated as in
(6), using data from the last n = 200 measurements. Then
we apply a first order low pass filter, with α = 0.97,

∇δfiltered(t) = α∇δ(t− 1) + (1− α)∇δ(t). (12)

The parameters described are summarised in Table I.
σ αseek v n δref α

10−3 mg/m3 20 1 m/s 200 7.45 mg/m3 0.97

TABLE I: Control algorithm parameters.

B. Numerical Results

We illustrate the complete AUV mission in Fig. 7 where
the AUV is following the front while collecting chlorophyll a
concentration measurements, estimating the chlorophyll a
concentration field and its field gradient, and updating its
direction. The complete mission has a duration of 33 hours,
approximately. The starting position is far from the bloom
and represented by the white star while the final position
is on the front and represented by the white square. In
this figure, the AUV seems to follow the algal bloom front
closely. This is further analysed in the Fig. 8, in which we
focus and zoom-in in the area inside of the blue square.
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Fig. 7: Overview of the full mission having the trajectory of the AUV (red) tracking the front (black) in the chlorophyll a field (blue-yellow). The white
star indicates the initial position and the white square the final position.

Fig. 8: Zoomed-in trajectory of the AUV (red) tracking the front (black),
with arrows representing the true and estimated gradient

In Fig. 8 we zoom-in in a region of the mission, previously
defined by a blue square, to focus on the performance of the
gradient estimation. This region corresponds to about 7 hours
of mission time. Here we illustrate the gradient performance
through arrows representing both the true and estimated gra-
dients along the path. The true gradient refers to the gradient
that the AUV would be able to compute if it had access to
the global information of the field. We compute it by taking
the spatial derivative of the chlorophyll a concentration field.
The estimated gradient refers to the output of the gradient
estimator, as in (7). The angle between the true and estimated
gradient arrows indicates the gradient error. However, in this
scenario, the chlorophyll a concentration field is non-convex
and fast-changing even in small areas. Therefore, the gradient
is an abstraction that gives an idea of direction rather than
an exact measure of the gradient. In fact, if we analyse the
straight portions of the path we would say that the error is
very close to zero, while by analysing the portions of the
path with higher curvature, we could say that the error is
larger while the gradient looks ambiguous and sensitive to
small changes in position. As for the control performance,
this figure doesn’t allow for such analysis so we zoom-in in
on the two areas inside the blue squares.

Let us now analyse the performance of the control and
its control components in Fig. 9. These figures correspond

(a) Zoom-in for the first area

(b) Zoom-in for the second area

Fig. 9: Zoom-in trajectory of the AUV (red) tracking the front (black), with
arrows representing seek and follow components of the control law

to the two zoom-in locations of the previous figure, the
front is the thin black line and the AUV path is represented
by a thicker red line. We also plot the seek and follow
components of the control law using arrows along the AUV
path. The control law is constructed as in eq.10, and it is
a sum of the seek component which has the same direction
as the estimated gradient and the follow component which
has a perpendicular direction with respect to the estimated
gradient. This sum constitutes the control law corresponding
to the AUV’s direction of movement. In the first zoom-in,
in Fig. 9a, the AUV always follows the front closely and
with minimal error. This is expected as the front is smooth
in curvature and the AUV remains on top of the front. The
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(a) Concentration of chlorophyll a: measurements from the AUV, and reference value.

(b) Gradient of the of chlorophyll a field: Estimated from GP model and ground truth.

Fig. 10: Analysis for the zoom-in region of Fig. 8.

(a) Analysis corresponding to Fig. 9b

(b) Analysis corresponding to Fig. 9a

Fig. 11: Control law components: seek and follow, for the region in Fig. 9b

control seek component accounts for small adjustments in
the trajectory. In the second zoom-in, in Fig. 9b, the AUV
remains on top of the front most of the time, and thus
the control follow component dominates the control law.
On the other hand, once the curvature changes at a faster
pace, the control follow component reduces and the control
seek becomes the dominating component. In this scenario of
fast-changing curvature, the AUV seems to have a delay in
updating its direction. There are two leading causes for this
behavior: the AUV’s turning radius and the update function
with the update rate on the gradient. The gradient’s update
function in (12) introduces a delay and a cut-off frequency.
This cut-off frequency is inversely proportional to the update
rate so the performance of the algorithm becomes a trade-off
between the smoothness introduced by the update function
with a smaller update rate and the delay introduced by it. For
this scenario, we considered that smoothness of movement
is a more important objective than the apparent delay in the
tighter curvature of the front.

We further analyse the algorithm’s behavior through time
series plots in Fig. 10 corresponding to the zoomed-in area
in Fig. 8. First, we consider the chlorophyll a concentration
measurements taken along the path in Fig. 10a. The time
series indicates that, as seen in the previous figures, the AUV
is always on top of the front, oscillating around it and with a
minimal error, in this case, lower than ±0.1mg/m3. Second,
we consider the gradient field estimation also taken along
the mission, in Fig. 10b. This time series also confirms what
we saw in the previous figures. Here we can see clearly
both the delay of the estimated gradient and its smoothness,
in comparison with the true gradient. Finally, let us further

analyse the control law, considering the time series of the
two control components in Fig. 11, for the region in Fig. 9.
For the first zoom-in area, which considers an almost linear
segment of the front, we get a small oscillation in Fig. 11a.
This corresponds to the zig-zag around the curve that we
see in the corresponding path figure. Whereas in the second
zoom-in, in which we consider a segment with two tight
curves, Fig. 11b, we see different patterns that represent os-
cillation around the front, followed by constant, almost linear
tracking with the control follow component dominating. For
both examples the follow component dominates the control
law, and the seek component grows when the AUV is far
from the front.

IV. CONCLUSIONS

We considered the problem of how to use satellite data to
improve adaptive sampling missions of an AUV equipped
with a chlorophyll a concentration sensor. Our solution
used GPs to model a chlorophyll a concentration front,
from which we derived the chlorophyll a concentration field
gradient, and integrated into a front tracking algorithm.
The front tracking algorithm was tested on a simulated
environment and resulted in the AUV finding and tracking
the front closely. Our future plan is to run experiments using
this method. This will consist on testing and improving the
method implemented in ROS, running more simulations on
Stonefish, integrating the chlorophyll a sensor on the AUV
and, finally, running experiments on a local front in the
summer of 2023 in the Stockholm archipelago.
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